

## **Electric Potential** TOPIC QUESTIONS

| Level      | AS Level        |
|------------|-----------------|
| Subject    | Physics         |
| Exam Board | AQA             |
| Paper Type | Multiple Choice |

Time Allowed: 30min



- 1. The force between two point charges is *F* when they are separated by a distance *r*. If the separation is increased to 3*r*, what is the force between the charges?
  - $\frac{F}{3r}$ 
    - $\mathsf{B} = \frac{F}{9r}$
  - c  $\frac{F}{3}$ 
    - D  $\frac{F}{9}$



2. The diagram shows the path of an  $\alpha$  particle deflected by the nucleus of an atom. Point P on the path is the point of closest approach of the  $\alpha$  particle to the nucleus.



Which one of the following statements about the  $\alpha$  particle on this path is correct?

- A Its acceleration is zero at P.
- **B** Its kinetic energy is greatest at P.
- C Its speed is least at P.
- **D** Its potential energy is least at P.



- 3. A repulsive force *F* acts between two positive point charges separated by a distance *r*. What will be the force between them if each charge is doubled and the distance between them ishalved?
  - $\mathbf{A}$  F
  - **B** 2F
  - **C** 4F
  - **D** 16F

4. The distance between two point charges of + 8.0 nC and + 2.0 nC is 60 mm.



At a point between the charges, on the line joining them, the resultant electric field strength iszero. How far is this point from the + 8.0 nC charge?

- A 20 mm
- **B** 25 mm
- **C** 40 mm
- **D** 45 mm



5. Which one of the following **cannot** be used as a unit for electric field strength?

**A** 
$$J m^{-1} C^{-1}$$

**B** 
$$J A^{-1} s^{-1} m^{-1}$$

$${f C}$$
 N A<sup>-1</sup> s<sup>-1</sup>

6. An electron and a proton are  $1.0 \times 10^{-10}$  m apart. In the absence of any other charges, what is the electric potential energy of the electron?

A 
$$+2.3 \times 10^{-18}$$
J

**B** 
$$-2.3 \times 10^{-18}$$
J

C 
$$+2.3 \times 10^{-8}$$
J



7.



An ion carrying a charge of  $+4.8 \times 10^{-19}$ C travels horizontally at a speed of  $8.0 \times 10^{5} \text{ms}^{-1}$ . It enters a uniform vertical electric field of strength 4200 V m<sup>-1</sup>, which is directed downwards and acts over a horizontal distance of 0.16m. Which one of the following statements is **not** correct?

- **A** The ion passes through the field in  $2.0 \times 10^{-7}$ s.
- **B** The force on the ion acts vertically downwards at all points in the field.
- **C** The magnitude of the force exerted on the ion by the field is  $1.6 \times 10^{-9}$  N.
- **D** The horizontal component of the velocity of the ion is unaffected by the electric field.

- 8. The electric potential at a distance *r* from a positive point charge is 45 V. The potential increases to 50 V when the distance from the charge decreases by 1.5 m. What is the value of *r*?
  - **A** 1.3 m
  - **B** 1.5 m
  - **C** 7.9 m
  - **D** 15 m



9. The repulsive force between two small negative charges separated by a distance r is F.

What is the force between the charges when the separation is reduce  $\frac{r}{d}$  to ?

- $A \frac{F}{9}$ 
  - $\frac{F}{3}$
  - **c** 3F
  - **D** 9F



10. What is the acceleration of an electron at a point in an electric field where the field strength is  $1.5 \times 10^5 \, \text{V}$  m<sup>-1</sup>?

A 
$$1.2 \times 10^6 \,\mathrm{m \, s^{-2}}$$

B 
$$1.4 \times 10^{13} \,\mathrm{m \ s^{-2}}$$

**C** 
$$2.7 \times 10^{15} \,\mathrm{m \, s^{-2}}$$

**D** 
$$2.6 \times 10^{16} \,\mathrm{m \, s^{-2}}$$

11. At a distance L from a fixed point charge, the electric field strength is E and the electric potential V.

What are the electric field strength and the electric potential at a distance 3L from the charge?

|   | Electric field strength | Electric potential |
|---|-------------------------|--------------------|
| Α | <u>E</u> 3              | <u>V</u><br>9      |
| В | $\frac{E}{3}$           | $\frac{V}{3}$      |
| С | <u>E</u> 9              | $\frac{V}{3}$      |
| D | <u>E</u> 9              | <u>V</u> 9         |



12. The diagram shows a particle with charge +Q and a particle with charge -Q separated by adistance d.

The particles exert a force F on each other.



An additional charge of +2Q is then given to each particle and their separation is increased to 2d.

What is the force that now acts between the particles?

- ${\bf A} \ \ {\rm an \ attractive \ force \ of} \ \frac{9}{2} F$
- **B** an attractive force of  $\frac{9}{4}F$
- ${\bf C}$  a repulsive force of  $\frac{3}{2}F$
- **D** a repulsive force of  $\frac{3}{4}I$
- 13. Two protons are separated by distance r.

The electrostatic force between the two protons is **X** times the gravitational force between them.

What is the best estimate for X?

- **A**  $10^{20}$
- **B**  $10^{28}$
- $C 10^{36}$
- **D** 10<sup>42</sup>



14. Two parallel metal plates separated by a distance d have a potential difference V across them. A particle with charge Q is placed midway between the plates.



What is the magnitude of the electrostatic force acting on the particle?

- A zero
- B  $\frac{QV}{2d}$ 
  - $c \frac{QV}{d}$
  - D 2QV

15. Two charged particles **P** and **Q** are separated by a distance of 120 mm. **X** is a point on the line between **P** and **Q** where the electric potential is zero.



What is the distance from P to X?

- **A** 40 mm
- **B** 48 mm
- **C** 60 mm
- **D** 72 mm



## 16. An isolated spherical conductor is charged.

The conductor has a radius R and an electric potential V. The electric field strength at its surface is E.



Point **T** is a distance 2R from the surface.

What are the electric field strength and electric potential at T?

|   | Electric field strength | Electric potential |
|---|-------------------------|--------------------|
| Α | $\frac{E}{2}$           | <u>V</u>           |
| В | <u>E</u> 3              | <u>V</u><br>9      |
| С | E 4                     | $\frac{\nu}{2}$    |
| D | <u>E</u> 9              | $\frac{V}{3}$      |

## 17. **O** is the centre of a negatively charged sphere.





**K** and **L** are two points at a distance  $r_1$  from **O**.**M** and **N** are two points at a distance  $r_2$  from **O**.

## Which statement is true?

- $\textbf{A} \qquad \text{The work done moving an electron from $\pmb{M}$ to $\pmb{K}$ is the same as that done moving an electron from $\pmb{K}$ to $\pmb{L}$. }$
- $\label{eq:Barrier} \textbf{B} \quad \text{ The work done moving a positron from } \textbf{K} \text{ to } \textbf{M} \text{ is the same as that done moving an electron from } \textbf{K} \text{ to } \textbf{M}.$
- No work is done moving an electron from **M** to **N**.
- **D** No work is done moving a positron from **L** to **N**.
- 18. A small object of mass m has a charge Q. The object remains stationary in an evacuated space between two horizontal plates. The plates are separated by a distance d and the potential difference between the plates is V.



What is V?

$$A \frac{mQg}{d}$$

$$B = \frac{mdg}{Q}$$

$$C = \frac{mQ}{d}$$

$$D \frac{md}{Q}$$



19. mJ of work is done when a charge of 30  $\mu$ C is moved between two points,  $\bm{M}$  and  $\bm{N}$ , in anelectric field.

What is the potential difference between **M** and **N**?

|--|

B 20 V

C 45 V

D 50 V

20. A parallel-plate capacitor is fully charged and then disconnected from the power supply. A dielectric is then inserted between the plates.

Which row correctly identifies the charge on the plates and the electric field strength between theplates?

|   | Charge         | Electric field strength |
|---|----------------|-------------------------|
| Α | Stays the same | Increases               |
| В | Increases      | Decreases               |
| С | Increases      | Increases               |
| D | Stays the same | Decreases               |