Gravitational Potential TOPIC QUESTIONS

Level	A Level
Subject	Physics
Exam Board	AQA
Paper Type	Multiple Choice

1. Which graph shows the relationship between the time period T and the orbital radius r of a planetin orbit around the Sun?

2. The diagram shows equipotential lines near a group of asteroids.

Which arrow shows the direction of the gravitational field at \mathbf{X} ?

A \uparrow
B \downarrow

C \leftarrow

D \rightarrow
3. Planet \mathbf{N} has a gravitational potential $-V$ at its surface. Planet \mathbf{M} has double the density and double the radius of planet \mathbf{N}. Both planets are spherical and have uniform density.

What is the gravitational potential at the surface of planet \mathbf{M} ?

A $-16 V$

B $-8 V$

C -4 V
For more help, please visit www.exampaperspractice.co.uk

D $\quad-0.2 \mathrm{~V}$
4. Satellites \mathbf{N} and \mathbf{F} have the same mass and are in circular orbits about the same planet. The orbital radius of \mathbf{F} is greater than that of \mathbf{N}.

Which is greater for \mathbf{F} than for \mathbf{N} ?

A gravitational force on the satellite

B angular speed

C kinetic energy

D orbital period
5. A planet of mass M and radius R rotates so quickly that material at its equator only just remainson its surface.

What is the period of rotation of the planet?

A $2 \pi \sqrt{\frac{R}{G M}}$
B $2 \pi \sqrt{\frac{G M}{R}}$
C $2 \pi \sqrt{\frac{R^{3}}{G M}}$

D $\quad 2 \pi \sqrt{\frac{G M}{R^{3}}}$
6. Which one of the following statements is correct?

The force between two charged particles
A is always attractive
B can be measured in $\mathrm{C}^{2} \mathrm{~F}^{-1} \mathrm{~m}^{-1}$
C is directly proportional to the distance between them
D is independent of the magnitude of the charges
7. Two point charges, X and Y , exert a force F on each other when they are at a distance d apart.

When the distance between them is 20 mm , the force they exert on each other is 0.5 F.What is the distance d ?

A 7 mm
B $\quad 14 \mathrm{~mm}$
C $\quad 15 \mathrm{~mm}$
D 28
mm
8. Which one of the following statements is correct?

When a negative ion is projected into an electric field
A the field can change the magnitude of the velocity but not its direction
B the field can change the direction of the velocity but not its magnitude
C the field can change both the magnitude and the direction of the velocity
D the ion will accelerate in the direction of the field
9. Two identical positive point charges, P and Q , are separated by a distance of 4.0 m . The resultant electric potential at point M , which is mid-way between the charges, is 25.0 V .

What would be the resultant electrical potential at a point 1.0 m closer to P ?
A $\quad 8.3 \mathrm{~V}$
B $\quad 12.5 \mathrm{~V}$
C 33.3 V
D $\quad 37.5$
V
10. The diagram below shows the field lines and equipotential lines around an isolated positive pointcharge.

Which one of the following statements concerning the work done when a small charge is movedin the field is incorrect?

A when it is moved from either P to Q or S to R, the work done is the same in each case
B when it is moved from Q to R no work is done
c when it is moved around the path PQRS, the overall work done is zero
D when it is moved around the path PQRS, the overall work done is equal to twice the workdone in moving from P to Q
11. A planet of mass M and radius R rotates so rapidly that loose material at the equator only justremains on the surface. What is the period of rotation of the planet? G is the universal gravitational constant.

A $\quad 2 \pi \sqrt{\frac{R}{G M}}$
B $\quad 2 \pi \sqrt{\frac{R^{2}}{G M}}$
C $\quad 2 \pi \sqrt{\frac{G M}{R^{3}}}$
D $\quad 2 \pi \sqrt{\frac{R^{3}}{G M}}$
12. The radius of a certain planet is x times the radius of the Earth and its surface gravitationalfield strength is y times that of the Earth.

Which one of the following gives the ratiQ (mass of the planet $)$?
A $x y$
B $x^{2} y$
C $x y^{2}$
D $x^{2} y^{2}$

E目
 EXAM PAPERS PRACTICE

13. Which one of the following could be a unit of gravitational potential?

A N
B J
C Nkg^{-1}
D $\quad{ }_{1}^{\mathrm{J} k g}$
14. Which one of the following graphs correctly shows the relationship between the gravitationalforce, F, between two masses and their separation r.

15. When at the surface of the Earth, a satellite has weight W and gravitational potential energy $-U$. It is projected into a circular orbit whose radius is equal to twice the radius of the Earth. Which line, A to D, in the table shows correctly what happens to the weight of the satellite and toits gravitational potential energy?

	weight	gravitational potential energy
A	becomes $\frac{W}{2}$	increases by $\frac{U}{2}$
B	becomes $\frac{W}{4}$	increases by $\frac{U}{2}$
C	remains W	increases by U
D	becomes	increases by U

16. Two identical uniform spheres each of radius R are placed in contact. The gravitational forcebetween them is F.

The spheres are now separated until the force of attraction is
What is the distance between the surfaces of the spheres after they have been separated?
A $2 R$

B $\quad 4 R$
c $8 R$
D 12
R
17. A satellite of mass m is in a circular orbit at height R above the surface of a uniform spherical planetof radius R and density ρ.

For more help, please visit www.exampaperspractice.co.uk

What is the force of gravitational attraction between the satellite and the planet?
A $\frac{\pi \rho G m R}{3}$
B $\frac{2 \pi p G m R}{3}$
C $\frac{\pi \rho G m R^{2}}{3}$
D $\frac{2 \pi p G m R^{2}}{3}$
18. The following data refers to two planets, P and Q .

	Radius / km	Density $/$ kg m $^{-}$
planet P	8000	6000
planet Q	16000	3000

The gravitational field strength at the surface of P is 13.4 N kg^{-1}. What is the gravitational field strength at the surface of Q?

A $\quad 3.4 \mathrm{~N} \mathrm{~kg}^{-1}$
B $\quad 13.4 \mathrm{~N} \mathrm{~kg}^{-1}$
C $\quad 53.6 \mathrm{~N} \mathrm{~kg}^{-1}$
${ }_{1}^{\mathrm{D}} \quad 80.4 \mathrm{Nkg}^{-}$
19. The diagram shows an isolated binary star system. The two stars have equal masses, M, and thedistance between their centres is r.

star 1
star 2
The point P is half-way between the two stars. What is the gravitational field strength at P?

A zero
B $-\frac{G M}{r^{2}}$
C $-\frac{2 G M}{r^{2}}$
D $-\frac{4 G M}{r^{2}}$
20. Which one of the following statements about gravitational potential is incorrect?

A It is analogous to the electric potential at a point in an electric field.
B It is equal to the gravitational potential energy of a mass of 1 kg .
C It is a vector quantity.
D The difference in gravitational potential between two points at different heightsabove the Earth depends on the position of the points.

