

Gravitational Field TOPIC QUESTIONS

- Which of the following statements about Newton's law of gravitation is correct?
 Newton's gravitational law explains
 - A the origin of gravitational forces.
 - **B** why a falling satellite burns up when it enters the Earth's atmosphere.
 - C why projectiles maintain a uniform horizontal speed.
 - D how various factors affect the gravitational force between two particles

2. A spacecraft of mass m is at the mid-point between the centres of a planet of mass M_1 and its moon of mass M_2 . If the distance between the spacecraft and the centre of the planet is d, whatis the magnitude of the resultant gravitational force on the spacecraft?

A
$$Gm(M_1 - M_2)$$
 d

B $Gm(M_1 + M_2)$
 d^2
 $C \frac{Gm(M_1 - M_2)}{d^2}$
 $C \frac{Gm(M_1 - M_2)}{d}$
 $C \frac{Gm(M_1 + M_2)}{d}$

- 3. Which one of the following statements about gravitational potential is correct?
 - A gravitational potential can have a positive value
 - **B** the gravitational potential at the surface of the Earth is zero
 - **C** the gravitational potential gradient at a point has the same numerical value as the gravitational field strength at that point
 - **D** the unit of gravitational potential is N kg⁻¹

4. A uniform electric field of electric field strength E is aligned so it is vertical. An ion moves vertically through a small distance Δd from point X to point Y in the field.

There is a uniform gravitational field of field strength g throughout the region.

Which line, A to D, in the table correctly gives the gravitational potential difference, and the electric potential difference, between X and Y?

	Gravitational potential difference	Electric potential difference
Α	$g\Delta d$	<i>Ε</i> Δ <i>d</i>
В	g∆d	$\frac{E}{\Delta d}$
C	$\frac{g}{\Delta d}$	EΔ
D	$\frac{g}{\Delta d}$	$\frac{E}{\Delta d}$

5. When a space shuttle is in a low orbit around the Earth it experiences gravitational forces F_E due to the Earth, F_M due to the Moon and F_S due to the Sun. Which one of the following correctly showshow the magnitudes of these forces are related to each other?

mass of Sun = 1.99×10^{30} kg mass of Moon = 7.35×10^{22} kg mean distance from Earth to Sun = 1.50×10^{11} m mean distance from Earth to Moon = 3.84×10^8 m

- $A F_{E} > F_{S} > F_{M}$
- $\mathbf{B} \qquad F_{\mathsf{S}} > F_{\mathsf{E}} > F_{\mathsf{M}}$
- \mathbf{C} $F_{\rm E} > F_{\rm M} > F_{\rm S}$
- $\mathbf{D} \qquad F_{\mathsf{M}} > F_{\mathsf{E}} > F_{\mathsf{S}}$
- 6. The graph shows how the gravitational potential, V, varies with the distance, r, from the centre of the Earth.

What does the gradient of the graph at any point represent?

- A the magnitude of the gravitational field strength at that point
- **B** the magnitude of the gravitational constant
- **C** the mass of the Earth
- **D** the potential energy at the point where the gradient is measured

7. The following data refer to two planets.

	radius/km	density/kg m ⁻
planet P	8 000	6 000
planet Q	16 000	3 000

The gravitational field strength at the surface of P is $13.4~N~kg^{-1}$. What is the gravitational field strength at the surface of Q?

- A 3.4 N kg⁻¹
- **B** 13.4 N kg⁻¹
- **C** 53.6 N kg⁻¹
- D 80.4 N kg

- 8. Near the surface of a planet the gravitational field is uniform and for two points, 10 m apart vertically, the gravitational potential difference is 3 J kg¹. How much work must be done in raising a mass of 4 kg vertically through 5 m?
 - **A** 3 J
 - **B** 6 J
 - C 12 J
 - **D** 15 J

- 9. What is the angular speed of a satellite in a geo-synchronous orbit around the Earth?
 - A 7.3 × 10⁻⁵ rad s⁻¹
 - **B** 2.6 × 10⁻¹ rad s⁻¹
 - **C** 24 rad s⁻¹
 - **D** 5.0 × 10⁶ rad

S-1

- 10. A planet has a radius half of the Earth's radius and a mass a quarter of the Earth's mass. What is the approximate gravitational field strength on the surface of the planet?
 - **A** 1.6 N kg⁻¹
 - **B** 5.0 N kg⁻¹
 - C 10 N kg⁻¹
 - **D** 20 N kg⁻¹
- 11. Two parallel metal plates are separated by a distance d and have a potential difference V acrossthem. Which expression gives the magnitude of the electrostatic force acting on a charge Q placed midway between the plates?

EXAM PAPERS PRACTICE

2VQ d

- B $\frac{VQ}{d}$
- $c \frac{VQ}{2d}$
- $D\frac{Qd}{v}$

12. The diagram shows the path of an α particle deflected by the nucleus of an atom. Point P on the path is the point of closest approach of the α particle to the nucleus.

Which of the following statements about the α particle on this path is correct?

A Its acceleration is zero at P.

- **B** Its kinetic energy is greatest at P.
- C Its potential energy is least at P.
- **D** Its speed is least at P.

13. The electric potential at a distance *I* from a positive point charge is 45 V. The potential increases to 50 V when the distance from the point charge decreases by 1.5 m. What is the value of *I*?

- $A = \begin{pmatrix} 1.3 \\ m \end{pmatrix}$
- B 1.5 m
- $c_{m}^{7.9}$
- **D** 15m

14. The diagram shows two particles at distance d apart. One particle has charge +Q and the other -2Q. The two particles exert an electrostatic force of attraction, F, on each other. Each particle is then given an additional charge +Q and their separation is increased to distance 2d.

Which of the following gives the force that now acts between the two particles?

- an attractive forceof Α
- a repulsive force of
- an attractive forceof
- a repulsive force of

15. Which of the following statements about a parallel plate capacitor is incorrect?

The capacitance of the capacitor is the amount of charge stored by the capacitor when the pd across the plates is 1 V.

- **B** A uniform electric field exists between the plates of the capacitor.
- **C** The charge stored on the capacitor is inversely proportional to the pd across the plates.
- **D** The energy stored when the capacitor is fully charged is proportional to the square of the pd across the plates.

16. What is the angular speed of a satellite in a geostationary orbit around the Earth?

- $1.2 \times 10^{-5} \text{ rad s}^{-1}$ Α
- $7.3 \times 10^{-5} \text{ rad s}^{-1}$
- $4.4 \times 10^{-3} \text{ rad s}^{-1}$

For more help, please visit www.exampaperspractice.co.uk

D $2.6 \times 10^{-1} \text{ rad s}^{-1}$

17. The graph shows how the gravitational potential varies with distance between two planets, **K** and **L**, that have the same radius.

Which statement is correct?

- **A** The mass of **L** is greater than the mass of **K**.
- \boldsymbol{B} The gravitational field strength at the surface of \boldsymbol{L} is greater than that at the surface of $\boldsymbol{K}.$
- **C** The escape velocity from planet **L** is greater than that from planet **K**.
- D More work must be done to move a mass of 1 kg from the surface of K to a distant point, than 1 kg from the surface of L.

18. A satellite **X** of mass m is in a concentric circular orbit of radius R about a planet of mass M.

What is the kinetic energy of X?

- A $\frac{GMm}{2R}$
- $\mathsf{B} \quad \frac{GMm}{R}$
- $\mathbf{c} \stackrel{2GMm}{=}$

4GMm

EXAM PAPERS PRACTICE

19. The distance between the Sun and Mars varies from 2.1×10^{11} m to 2.5×10^{11} m. When Mars is closest to the Sun, the force of gravitational attraction between them is F.

What is the force of gravitational attraction between them when they are furthest apart?

- **A** 0.71*F*
- **B** 0.84*F*
- **C** 1.2*F*
- **D** 1.4*F*

20. Charon is a moon of Pluto that has a mass equal to $\frac{1}{9}$ that of Pluto.

The distance between the centre of Pluto and the centre of Charon is d.

X is the point at which the resultant gravitational field due to Pluto and Charon is zero.

