Gravitational Field TOPIC QUESTIONS

Level	A Level
Subject	Physics
Exam Board	AQA
Paper Type	Multiple Choice

1. Which of the following statements about Newton's law of gravitation is correct?

Newton's gravitational law explains

A the origin of gravitational forces.

B why a falling satellite burns up when it enters the Earth's atmosphere.

C why projectiles maintain a uniform horizontal speed.

D how various factors affect the gravitational force between two particles

EXAM PAPERS PRACTICE

2. A spacecraft of mass m is at the mid-point between the centres of a planet of mass M_{1} and its moon of mass M_{2}. If the distance between the spacecraft and the centre of the planet is d, whatis the magnitude of the resultant gravitational force on the spacecraft?

A
 $\frac{G m\left(M_{1}-M_{2}\right)}{d}$

B
$\frac{G m\left(M_{1}+M_{2}\right)}{d^{2}}$
$c^{\frac{G m\left(M_{1}-M_{2}\right)}{d^{2}}}$
D $\frac{\operatorname{Gm}\left(M_{1}+M_{2}\right)}{d}$

3. Which one of the following statements about gravitational potential is correct?

A gravitational potential can have a positive value
B the gravitational potential at the surface of the Earth is zero
C the gravitational potential gradient at a point has the same numerical value as the gravitational field strength at that point

D the unit of gravitational potential is Nkg^{-1}
4. A uniform electric field of electric field strength E is aligned so it is vertical. An ion moves vertically through a small distance Δd from point X to point Y in the field.
There is a uniform gravitational field of field strength g throughout the region.

Which line, A to D, in the table correctly gives the gravitational potential difference, and theelectric potential difference, between X and Y ?
\(\left.$$
\begin{array}{|c|c|c|}\hline & \begin{array}{c}\text { Gravitational } \\
\text { potential } \\
\text { difference }\end{array} & \begin{array}{c}\text { Electric } \\
\text { potential } \\
\text { difference }\end{array}
$$

\hline \mathrm{A} \& g \Delta d \& E \Delta

d\end{array}\right]\)| $\frac{E}{\Delta d}$ |
| :---: |
| B |
| C |

5. When a space shuttle is in a low orbit around the Earth it experiences gravitational forces F_{E} due tothe Earth, F_{M} due to the Moon and F_{S} due to the Sun. Which one of the following correctly showshow the magnitudes of these forces are related to each other?
```
mass of Sun = 1.99 \times 1030
kg mass of Moon = 7.35 }
1022 kg
mean distance from Earth to Sun = 1.50\times
1011 m mean distance from Earth to Moon =
3.84\times1\mp@subsup{0}{}{8}\textrm{m}
```

A $\quad F_{\mathrm{E}}>F_{\mathrm{S}}>F_{\mathrm{M}}$

B $\quad F_{\mathrm{S}}>F_{\mathrm{E}}>F_{\mathrm{M}}$

C $\quad F_{\mathrm{E}}>F_{\mathrm{M}}>F_{\mathrm{S}}$

D $\quad F_{\mathrm{M}}>F_{\mathrm{E}}>F_{\mathrm{S}}$
6. The graph shows how the gravitational potential, V, varies with the distance, r, from the centre of the Earth.

What does the gradient of the graph at any point represent?
A the magnitude of the gravitational field strength at that point
B the magnitude of the gravitational constant
C the mass of the Earth
D the potential energy at the point where the gradient is measured
7. The following data refer to two planets.

	radius/km	density/kg m
planet P	8000	6000
planet Q	16000	3000

The gravitational field strength at the surface of P is $13.4 \mathrm{~N} \mathrm{~kg}^{-1}$. What is the gravitational field strength at the surface of Q ?

A $\quad 3.4 \mathrm{~N} \mathrm{~kg}^{-1}$
B $\quad 13.4 \mathrm{~N} \mathrm{~kg}^{-1}$
C $\quad 53.6 \mathrm{~N} \mathrm{~kg}^{-1}$
D $\quad 80.4 \mathrm{Nkg}$
8. Near the surface of a planet the gravitational field is uniform and for two points, 10 m apart vertically, the gravitational potential difference is $3 \mathrm{~J} \mathrm{~kg}^{-1}$. How much work must be done in raising a mass of 4 kg vertically through 5 m ?

A 3J
B 6 J
C $\quad 12 \mathrm{~J}$
D 15 J
9. What is the angular speed of a satellite in a geo-synchronous orbit around the Earth?

A $\quad 7.3 \times 10^{-5} \mathrm{rad} \mathrm{s}^{-1}$
B $2.6 \times 10^{-1} \mathrm{rad} \mathrm{s}^{-1}$
C $24 \mathrm{rad} \mathrm{s}^{-1}$
D $\quad 5.0 \times 10^{6} \mathrm{rad}$
S^{-1}

EXAM PAPERS PRACTICE

10. A planet has a radius half of the Earth's radius and a mass a quarter of the Earth's mass. What is the approximate gravitational field strength on the surface of the planet?

A $\quad 1.6 \mathrm{Nkg}^{-1}$
B $\quad 5.0 \mathrm{Nkg}^{-1}$
C $\quad 10 \mathrm{Nkg}^{-1}$
D $\quad 20 \mathrm{Nkg}^{-1}$
11. Two parallel metal plates are separated by a distance d and have a potential difference V acrossthem. Which expression gives the magnitude of the electrostatic force acting on a charge Q placed midway between the plates?

12. The diagram shows the path of an α particle deflected by the nucleus of an atom. Point P on thepath is the point of closest approach of the α particle to the nucleus.

Which of the following statements about the α particle on this path is correct?

B Its kinetic energy is greatest at P.

C Its potential energy is least at P.

D Its speed is least at P.
13. The electric potential at a distance r from a positive point charge is 45 V . The potential increases to 50 V when the distance from the point charge decreases by 1.5 m . What is the value of r ?

A ${ }_{\mathrm{m}}^{1.3}$
B ${ }^{1.5}$
C ${ }^{7.9}$

D 15 m

EXAM PAPERS PRACTICE

14. The diagram shows two particles at distance d apart. One particle has charge $+Q$ and the other $-2 Q$. The two particles exert an electrostatic force of attraction, F, on each other. Each particle is then given an additional charge $+Q$ and their separation is increased to distance $2 d$.

Which of the following gives the force that now acts between the two particles?
A an attractive forceof $\quad \frac{F}{4}$
B a repulsive force of $\frac{F}{4}$
C an attractive forceof
D a repulsive force of $\frac{F}{2}$
$\frac{F}{2}$
\square
15. Which of the following statements about a parallel plate capacitor is incorrect?

A The capacitance of the capacitor is the amount of charge stored by the capacitor when the pd across the plates is 1 V .

B A uniform electric field exists between the plates of the capacitor.

C The charge stored on the capacitor is inversely proportional to the pd across the plates.

D The energy stored when the capacitor is fully charged is proportional to the square of the pd across the plates.
16. What is the angular speed of a satellite in a geostationary orbit around the Earth?

A $\quad 1.2 \times 10^{-5} \mathrm{rad} \mathrm{s}^{-1}$
B $\quad 7.3 \times 10^{-5} \mathrm{rad} \mathrm{s}^{-1}$
C $\quad 4.4 \times 10^{-3} \mathrm{rad} \mathrm{s}^{-1}$

For more help, please visit www.exampaperspractice.co.uk

D $\quad 2.6 \times 10^{-1} \mathrm{rad} \mathrm{s}^{-1}$
17. The graph shows how the gravitational potential varies with distance between two planets, \mathbf{K} and \mathbf{L}, that have the same radius.

Which statement is correct?

A The mass of \mathbf{L} is greater than the mass of \mathbf{K}.

B The gravitational field strength at the surface of \mathbf{L} is greater than that at the surface of \mathbf{K}.

C The escape velocity from planet \mathbf{L} is greater than that from planet \mathbf{K}.

D More work must be done to move a mass of 1 kg from the surface of \mathbf{K} to a distant point, than 1 kg from the surface of \mathbf{L}.
18. A satellite \mathbf{X} of mass m is in a concentric circular orbit of radius R about a planet of mass M.

What is the kinetic energy of \mathbf{X} ?

A $\frac{G M n}{2 R}$
B $\frac{G M n}{R}$
C $\frac{2 G M n}{R}$

D $\frac{4 G M n n}{R}$
19. The distance between the Sun and Mars varies from $2.1 \times 10^{11} \mathrm{~m}$ to $2.5 \times 10^{11} \mathrm{~m}$. When Mars is closest to the Sun, the force of gravitational attraction between them is F.

What is the force of gravitational attraction between them when they are furthest apart?

A $0.71 F$
B $0.84 F$
C $1.2 F$

D $1.4 F$
20. Charon is a moon of Pluto that has a mass equal to $\frac{1}{9}$ that of Pluto.

The distance between the centre of Pluto and the centre of Charon is d.
\mathbf{X} is the point at which the resultant gravitational field due to Pluto and Charon is zero.

What is the distance of \mathbf{X} from the centre of Pluto?

A

$$
\frac{2}{9} d
$$

B
$\frac{2}{3} d$
$\frac{3}{4} d$
D
$\frac{8}{9} d$

