

7.1 Equilibrium

Question Paper

Exam Papers Practice

To be used by all students preparing for DP IB Chemistry SL Students of other boards may also find this useful

Ethyne and hydrogen are formed from methane and a dynamic equilibrium is established.

$$2CH_4(g) = 3H_2(g) + C_2H_2(g)$$

What are the units for K_c ?

- A. $mol dm^{-3}$
- $B. mol^2 dm^{-6}$
- C. mol³ dm⁻⁹
- $D. mol^4 dm^{-12}$

[1 mark]

Question 2

The dissociation of gas X₂Y₄ into XY₂ is represented in the equation below:

$$X_2Y_4(g) = 2XY_2(g)$$
 $\Delta H^{\emptyset} = +60 \text{ kJ mol}^{-1}$

At constant pressure, if the temperature of the equilibrium mixture of the gases is increased, will the volume of the mixture increase or decrease and why?

- A. the volume will increase, but only because of a shift of equilibrium towards the right
- B. the volume will increase, both because of a shift of equilibrium towards the right and also because of thermal expansion
- C. the volume will stay the same because any thermal expansion could be exactly counteracted by a shift of equilibrium towards the left
- D. the volume will decrease because a shift of equilibrium towards the left would more than counteract any thermal expansion

The reaction between nitrogen and hydrogen produces ammonia gas:

$$N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$$

If the equilibrium constant for the reaction is x, what is the equilibrium constant for the following reaction?

$$2N_2(g) + 6H_2(g) \rightleftharpoons 4NH_3(g)$$

- A.x
- B. 2×
- $C. x^2$
- $D.2x^2$

[1 mark]

Question 4

For the following reaction at equilibrium

$$H_2S(aq) + Mg^{2+}(aq) = MgS(s) + 2H^+(aq)$$

Which of the following changes will result in more MgS being produced?

- A. Adding sodium hydroxide
- B. Decreasing the pressure
- C. Adding a catalyst
- D. Increasing the temperature

 $\Delta H < 0$

When a chemical reaction reaches equilibrium which of the following can be said about the concentrations of the substances present, and the rates of reaction?

	Concentrations of the reactants and products	Rates of forward and backward reactions
Α	Continue to change	Remain the same
В	Remain constant	Remain the same
С	Continue to change	Are different
D	Remain constant	Are different

[1 mark]

Question 6

The Haber process is used to produce ammonia industrially by the following reaction

$$N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$$

Which statements explain why a catalyst is used?

- A catalyst lowers the activation energy 1
- A catalyst moves the position of equilibrium towards the product
- A catalyst allows the same rate to be achieved at a lower temperature 3

A. 1 and 2 only

Papers Practice

C.2 and 3 only

D.1,2 and 3

Study the following equilibrium reaction and determine which of the changes listed below will shift the equilibrium to the right hand side.

$$2CO_2(g) \rightleftharpoons 2CO(g) + O_2(g)$$

- using a catalyst 1
- reducing the oxygen concentration 2
- increasing the volume of the container
- A.1 and 2 only
- B. 1 and 3 only
- C.2 and 3 only
- D.1,2 and 3

[1 mark]

Question 8

Which of the following conclusions can be made about this reaction?

$$H_2O(g) = H_2(g) + \frac{1}{2}O_2(g)$$
 $K_c = 8 \times 10^{-41} at 25 °C$

$$K_c = 8 \times 10^{-41} \text{ at } 25 \,^{\circ}\text{C}$$

s Practice

- A. The reaction does not proceed
- B. The reaction goes almost to completion
- C. The products have a higher concentration than the reactants
- D. The concentrations of reactants and products are the same.

The value of K_c at 298K for the following reaction is 4.0. The reaction takes several days to react in equilibrium at room temperature.

$$CH_3COOH(I) + CH_3CH_2OH(I) = CH_3COOCH_2CH_3(I) + H_2O(I)$$

A student carried out the reaction shown and a day later measured the concentrations and calculated a value for the reaction quotient, Q. She found that the value of Q was 8.7.

This value tells you that:

- A. The reaction has not reached equilibrium and is moving left to right.
- B. The reaction has not reached equilibrium and is moving right to left.
- C. The reaction has reached equilibrium, but there are more products than reactants.
- $D. \, The \, reaction \, has \, reached \, equilibrium, \, but \, there \, are \, more \, reactants \, than \, products.$

 $2|C|(I) = I_2(g) + CI_2(g) \Delta H \equiv -26 \text{ kJ}$

What will change if the temperature is lowered?

In the equilibrium reaction shown

Question 10

	The position of equilibrium	The value of K _c
Α	will shift to the right	decreases
В	will shift to the right	increases
С	will shift to the left	decreases
D	will shift to the left	increases

[1 mark]