Molecular Kinetic Theory Model TOPIC QUESTIONS

Level	A Level
Subject	Physics
Exam Board	AQA
Paper Type	Multiple Choice

[^0]
EXAM PAPERS PRACTICE

1. A mechanical system is oscillating at resonance with a constant amplitude. Which one of thefollowing statements is not correct?

A The applied force prevents the amplitude from becoming too large.
B The frequency of the applied force is the same as the natural frequency of oscillation of the system.

C The total energy of the system is constant.
D The amplitude of oscillations depends on the amount of damping.
2. For a particle moving in a circle with uniform speed, which one of the following statements is correct?

A The kinetic energy of the particle is constant.
B The force on the particle is in the same direction as the direction of motion of the particle.
C The momentum of the particle is constant.
D The displacement of the particle is in the direction of the force.
3. A young child of mass 20 kg stands at the centre of a uniform horizontal platform which rotates at a constant angular speed of $3.0 \mathrm{rad} \mathrm{s}^{-1}$. The child begins to walk radially outwards towards the edge of the platform. The maximum frictional force between the child and the platform is 200 N . What is the maximum distance from the centre of the platform to which thechild could walk without the risk of slipping?

A $\quad 1.1 \mathrm{~m}$
B $\quad 1.3 \mathrm{~m}$
C $\quad 1.5 \mathrm{~m}$
D $\quad 1.7 \mathrm{~m}$
4. A particle travels at a constant speed around a circle of radius r with centripetal acceleration a. What is the time taken for ten complete rotations?

A $\frac{\pi}{5} \sqrt{\frac{a}{r}}$
B $\frac{\pi}{5} \sqrt{\frac{r}{a}}$
C $\quad 20 \pi \sqrt{\frac{a}{r}}$
D $20 \pi \sqrt{\frac{r}{a}}$
5. The frequency of a body moving with simple harmonic motion is doubled. If the amplituderemains the same, which one of the following is also doubled?

A the time period
B the total energy
C the maximum velocity

D the maximum acceleration
6. A body moves with simple harmonic motion of amplitude A and frequency What is the magnitude of the acceleration when the body is at maximum displacement?

A zero
B $\quad 4 \pi^{2} A b^{2}$
c $A b^{2}$
D $\frac{4 \pi^{2} A}{b^{2}}$
EXAM PAPERS PRACTICE
7. An object oscillating in simple harmonic motion has a time period T. The first graph shows how its displacement varies with time. Which of the subsequent graphs, A to D, show how thekinetic energy, E_{k}, of the object varies with time?

8. The period of vertical oscillation of a mass-spring system is T when the spring carries a mass of 1.00 kg . What mass should be added to the 1.00 kg if the period is to be increased to 1.50 T ?

A $\quad 0.25 \mathrm{~kg}$
B $\quad 1.00 \mathrm{~kg}$
C $\quad 1.25 \mathrm{~kg}$
D $\quad 2.00 \mathrm{~kg}$
9. The diagram shows two positions, \mathbf{X} and Y , on the Earth's surface.

Which line, \mathbf{A} to D , in the table gives correct comparisons at \mathbf{X} and Y for gravitational potentialand angular velocity?

	gravitational potential at Xcompared with Y	angular velocity at Xcompared with Y
A	greater	greater
B	greater	same
C	greater	smalle r
D	same	same

10. What would the period of rotation of the Earth need to be if objects at the equator were to appear weightless?
radius of Earth $=6.4 \times 10^{6} \mathrm{~m}$
A 4.5×10^{-2} hours
B $\quad 1.4$ hours
C 24 hours

D 160 hours
11. A mass of 0.90 kg is suspended from the lower end of a light spring of stiffness $80 \mathrm{~N} \mathrm{~m}^{-1}$.

When the mass is displaced vertically and released, it undergoes vertical oscillations of small amplitude.

What is the frequency of the oscillations?

A $\quad 0.071 \mathrm{~Hz}$
B $\quad 0.67 \mathrm{~Hz}$

C $\quad 1.50 \mathrm{~Hz}$

D $\quad 14 \mathrm{~Hz}$
12. The period of a simple pendulum is doubled when the pendulum length is increased by 1.8 m .What is the original length of the pendulum?

A $\quad 0.45 \mathrm{~m}$

B $\quad 0.60 \mathrm{~m}$
C $\quad 0.90 \mathrm{~m}$

D $\quad 3.6 \mathrm{~m}$
mass m is oscillating with simple harmonic motion. The period of the oscillation is T and the amplitude is A.

What is the maximum kinetic energy of the particle?

A $\quad \frac{m A^{2}}{2 T^{2}}$
B $\frac{\pi^{2} m A^{2}}{2 T^{2}}$
C $\frac{2 m A^{2}}{T^{2}}$
D $\frac{2 \pi^{2} m A^{2}}{T^{2}}$

14. A simple pendulum and a mass-spring system each have a time period T on the Earth.They are taken to the surface of a planet where the acceleration due to gravity is $\frac{g}{4}$.

What are the time periods of the pendulum and the mass-spring system on this planet?

	Simple pendulum	Mass-spring system
A	$\frac{T}{2}$	T
B	$2 T$	T
C	$\frac{T}{2}$	$2 T$
D	$2 T$	$2 T$

15. A particle of mass m undergoes simple harmonic motion with amplitude A and frequency f. What is the total energy of the particle?

A $2 \pi m f A^{2}$

B $\quad 2 \pi^{2} m f^{2} A^{2}$
C $4 \pi^{2} m^{2} f^{2} A$
D $\quad 4 \pi^{2} m f^{2} A^{2}$
16. The time period of a pendulum on Earth is 1.0 s . What would be the period of a pendulum ofthe same length on a planet with half the density but twice the radius of Earth?

A $\quad 0.5 \mathrm{~s}$
B $\quad 1.0 \mathrm{~s}$
C $\quad 1.4 \mathrm{~s}$
D 2.0 s
17. Which one of the following statements always applies to a damping force acting on avibrating system?

A It is in the same direction as the acceleration.
B It is in the same direction as the displacement.

For more help, please visit www.exampaperspractice.co.uk

C It is in the opposite direction to the velocity.
D It is proportional to the displacement.
18. A satellite of mass m travels in a circular orbit of radius raround a planet of mass M. Whichone of the following expressions gives the angular speed of the satellite?

A

$$
\sqrt{G M r}
$$

B
$\sqrt{G m r}$
C $\sqrt{\frac{G m}{r^{3}}}$

D $\sqrt{\frac{G M}{r^{3}}}$

19. The diagram shows a disc of diameter 120 mm that can turn about an axis through its centre.

The disc is turned through an angle of 30° in 20 ms . What is the average speed of a point on theedge of the disc during this time?

A $\quad 0.5 \pi \mathrm{~m} \mathrm{~s}^{-1}$
B $\pi \mathrm{m} \mathrm{s}^{-1}$
C $\quad 1.5 \pi \mathrm{~m} \mathrm{~s}^{-1}$
D $\quad 2 \pi \mathrm{~m} \mathrm{~s}^{-1}$
20. A particle of mass m moves in a circle of radius r at a uniform speed with frequency f. What is the kinetic energy of the particle?

A $\frac{m f^{2} r^{2}}{4 \pi^{2}}$
B $\frac{m f^{2} r}{2}$
C $\quad 2 \pi^{2} m f^{2} r^{2}$

D $\quad 4 \pi^{2} m f^{2} r^{2}$

For more help, please visit www.exampaperspractice.co.uk

[^0]: Time Allowed : 30min

