Ideal Gasses TOPIC QUESTIONS

Level	A Level
Subject	Physics
Exam Board	AQA
Paper Type	Multiple Choice

1. A transparent illuminated box contains small smoke particles and air. The smoke particles are observed to move randomly when viewed through a microscope.What is the cause of this observation of Brownian motion?

A Smoke particles gaining kinetic energy by the absorption of light.
B Collisions between smoke particles and air molecules.
C Smoke particles moving in convection currents caused by the air being heated by the light.
2. The smoke particles moving randomly due to their temperature.

A continuous stream of water falls through a vertical distance of 100 m .Assume no thermal energy is transferred to the surroundings.
The specific heat capacity of water is $4200 \mathrm{~J} \mathrm{~kg}^{-1} \mathrm{~K}^{-1}$

What is the temperature difference of the water between the top and bottom of the waterfall?

A 0.023 K
B 0.23 K

C 2.3 K
D $\quad 4.3 \mathrm{~K}$
3. A student measures the power of a microwave oven. He places 200 g of water at 23 ${ }^{\circ} \mathrm{C}$ into themicrowave and heats it on full power for 1 minute. When he removes it, the temperature of the water is $79^{\circ} \mathrm{C}$.

The specific heat capacity of water is $4200 \mathrm{~J} \mathrm{~kg}^{-1} \mathrm{~K}^{-1}$.
What is the average rate at which thermal energy is gained by the water?

A 780 W
B 840 W

C 1.1 kW

D 4.6 Kw
4. Which of the following is not used as valid assumption when deriving the equation $P=\frac{1}{3} N m\left(c_{\mathrm{rms}}\right)^{2}$ in the simple kinetic theory of gases?

A The molecules suffer negligible change of momentumon collision with the walls of the container.

B Attractive forces between molecules are negligible.
C The duration of a collision is negligible compared withthe time between collisions.

D The volume of the molecules is negligible comparedwith the volume of the gas.
5. A liquid flows continuously through a chamber that contains an electric heater. When the steady state is reached, the liquid leaving the chamber is at a higher temperature than the liquid enteringthe chamber. The difference in temperature is Δt.

Which of the following will increase Δt with no other change?

A Increasing the volume flow rate of the liquid
B Changing the liquid to one with a lower specific heat capacity
C Using a heating element with a higher resistance
D Changing the liquid to one that has a higher density
6. The diagram shows the $p-V$ diagram of an ideal hot-air engine. WX and YZ are isothermal changes.

Which line of the table below correctly indicates the nature of the work done on or by the air ineach part of the cycle?

	WX	XY	YZ	ZW

For more help, please visit www.exampaperspractice.co.uk

A	zero	by	zero	on
B	by	zero	on	zero
C	zero	on	zero	by
D	on	zero	by	zero

7. The temperature of a room increases from 283 K to 293 K . The r.m.s. speed of the air molecules in theroom increases by a factor of

A 1.02
B 1.04
C 1.41
D 2.00
8. A fixed mass of an ideal gas initially has a volume V and an absolute temperature T. Its initialpressure could be doubled by changing its volume and temperature to

A $\quad V / 2$ and $4 T$
B V/4 and T/2
C $2 V$ and $T / 4$
D $4 V$ and $2 T$
9. A car of mass M travelling at speed V comes to rest using its brakes. Energy is dissipated in the brake discs of total mass m and specific heat capacity c. The rise in temperature of the brake discs can be estimated from

A $\frac{m V^{2}}{2 M c}$
B $\frac{2 M V^{2}}{m c}$
C $\frac{M V^{2}}{2 m c}$
D $\quad \frac{2 m c}{M V^{2}}$
10. Which one of the following is not an assumption about the properties of particles in the simplekinetic theory?

A ${ }^{2>}$ is the average speed of the particles
B The forces between the particles are negligible except when particles collide
C The time spent by particles in collision is negligible compared with the time spentbetween collisions

D The volume of the particles is negligible compared to the volume of the container
11. What is the total internal energy of 2.4 mol of an ideal gas which has a temperature of $15^{\circ} \mathrm{C}$?

A $6.0 \times 10^{-21} \mathrm{~J}$

B $1.4 \times 10^{-20} \mathrm{~J}$

C $4.5 \times 10^{2} \mathrm{~J}$

D $8.6 \times 10^{3} \mathrm{~J}$
12. The composition of a carbon dioxide $\left(\mathrm{CO}_{2}\right)$ molecule is one atom of ${ }_{6}^{12} \mathrm{C}$ and two atoms of ${ }_{8}^{16} \mathrm{O}$ What is the number of molecules of CO_{2} in 2.2 kg of the gas?

A 1.0×10^{22}

B 3.0×10^{22}
C 3.0×10^{25}

D 4.7×10^{25}

For more help, please visit www.exampaperspractice.co.uk
13. Brownian motion

A makes it possible to see the motion of air molecules.

B is caused by the collisions of smoke particles.

C is caused by collisions between air molecules and smoke particles.
D occurs because air is a mixture of gases and the molecules have different masses.
14. A sample \mathbf{P} of an ideal gas contains 1 mol at an absolute temperature T.

A second sample \mathbf{Q} of an ideal gas contains $\frac{2}{3} \mathrm{~mol}$ at an absolute temperature $2 T$.
The total molecular kinetic energy of \mathbf{P} is E.
What is the total molecular kinetic energy of \mathbf{Q} ?

A $\frac{2}{3} E$
B $\frac{3}{4} E$
C $\frac{4}{3} E$
D $\frac{3}{2} E$
15. The diagram shows two flasks \mathbf{X} and \mathbf{Y} connected by a thin tube of negligible volume.

The flasks contain an ideal gas.
The volume of \mathbf{X} is twice the volume of \mathbf{Y}. When \mathbf{X} is at a temperature of 100 K and \mathbf{Y} is at atemperature of 400 K there is no net transfer of particles between the flasks.
X contains
gas of mass
m. What is
the mass of gas in Y ?

A $\frac{m}{8}$

B $\frac{m}{2}$
C $2 m$

D $8 m$

