Simple Harmonic Motion TOPIC QUESTIONS

Level	A Level
Subject	Physics
Exam Board	AQA
Paper Type	Multiple Choice

[^0]EXAM PAPERS PRACTICE

1. The wheel of the London Eye has a diameter of 130 m and rotates at a steady speed, completing one rotation every 30 minutes. What is the centripetal acceleration of a person in a capsule at therim of the wheel?

A $\quad 1.2 \times 10^{-4} \mathrm{~ms}^{-2}$
B $\quad 2.5 \times 10^{-4} \mathrm{~ms}^{-2}$
C $\quad 3.9 \times 10^{-4} \mathrm{~ms}^{-2}$
${ }_{2} \quad 7.9 \times 10^{-4} \mathrm{~ms}^{-}$
2. A small body of mass m rests on a horizontal turntable at a distance r from the centre. If the maximum frictional force between the body and the turntable $\frac{m g}{i \delta}$, what is the angular
speedat which the body starts to slip?

A $\sqrt{\frac{g r}{2}}$
B $\frac{g}{r}$
c $\sqrt{\frac{g}{2 r}}-\mathrm{A} \quad \mathrm{A}-\square \mathrm{D}$
D $\quad \frac{1}{2} \sqrt{\frac{g}{r}}$
3. A body of mass 0.50 kg , fixed to one end of a string, is rotated in a vertical circle of radius 1.5 m atan angular speed of $5.0 \mathrm{rad} \mathrm{s}^{-1}$. What is the maximum tension in the string?

A $\quad 5.0 \mathrm{~N}$
B $\quad 9.0 \mathrm{~N}$
C $\quad 14 \mathrm{~N}$
D $\quad 24 \mathrm{~N}$

For more help, please visit www.exampaperspractice.co.uk
4. A particle of mass m oscillates in a straight line with simple harmonic motion of constant amplitude. The total energy of the particle is E. What is the total energy of another particle of mass $2 m$,oscillating with simple harmonic motion of the same amplitude but double the frequency?

A E
B $2 E$
C $4 E$
D $8 E$

EXAM PAPERS PRACTICE

5. When a mass suspended on a spring is displaced, the system oscillates with simple harmonic motion. Which one of the following statements regarding the energy of the system is incorrect?

A The potential energy has a minimum value when the spring is fully compressed or fully extended.

B The kinetic energy has a maximum value at the equilibrium position.
C The sum of the kinetic and potential energies at any time is constant.

D The potential energy has a maximum value when the mass is at rest
6. A mass M on a spring oscillates along a vertical line with the same period T as an object O in uniform circular motion in a vertical plane. When M is at its highest point, O is at its lowest point.

What is the least time interval between successive instants when the acceleration of M is exactlyin the opposite direction to the acceleration of O ?

A $\frac{T}{4}$
B $\frac{T}{2}$
C ${ }^{\frac{3 T}{4}}$
D T
7. A particle of mass m oscillates with amplitude A at frequency f. What is the maximum kinetic energy of the particle?

A $\quad \frac{1}{2}_{\Pi^{2}} m f^{2} A^{2}$
B $\quad \pi^{2} m f^{2} A^{2}$
C $\quad 2 \pi^{2} m f^{2} A^{2}$
D $\quad 4 \pi^{2} m f^{2} A^{2}$

For more help, please visit www.exampaperspractice.co.uk
8. For a particle moving in a circle with uniform speed, which one of the following statements is correct?

A The displacement of the particle is in the direction of the force.
B The force on the particle is in the same direction as the direction of motion of the particle.
C The momentum of the particle is constant.
D The kinetic energy of the particle is constant.
9. A ball bearing rolls on a concave surface, as shown in the diagram, in approximate simple harmonic motion. It is released from A and passes through the lowest point B before reaching \mathbf{C}. Itthen returns through the lowest point \mathbf{D}. At which stage, A, B, C or D, does the ball bearing experience maximum acceleration to the left?

EXAM PAPERS PRACTICE
10. A body moves with simple harmonic motion of amplitude A and frequency $\quad \frac{b}{2 \pi}$. What is the magnitude of the acceleration when the body is at maximum displacement?

A zero
B $4 \pi^{2} A b^{2}$
C $A b^{2}$
D $\frac{4 \pi^{2} A}{b^{2}}$
11. A mass M hangs in equilibrium on a spring. M is made to oscillate about the equilibrium position bypulling it down 10 cm and releasing it. The time for M to travel back to the equilibrium position for the first time is 0.50 s . Which line, A to D , is correct for these oscillations?

	amplitude/c m	period/s
A	10	1.0
B	10	2.0
C	20	2.0
D	20	1.0

12. Which one of the following statements is true when an object performs simple harmonic motionabout a central point O ?

A The acceleration is always away from 0 .
B The acceleration and velocity are always in opposite directions.
C The acceleration and the displacement from O are always in the same direction.
For more help, please visit www.exampaperspractice.co.uk

EXAM PAPERS PRACTICE

D The graph of acceleration against displacement is a straight line.

For more help, please visit www.exampaperspractice.co.uk
13. A girl of mass 40 kg stands on a roundabout 2.0 m from the vertical axis as the roundabout rotatesuniformly with a period of 3.0 s . The horizontal force acting on the girl is approximately

A zero.
B $3.5 \times 10^{2} \mathrm{~N}$.
C $7.2 \times 10^{2} \mathrm{~N}$.
D 2.8×10^{4}
N.

14. For a particle moving in a circle with uniform speed, which one of the following statements is incorrect?

A The velocity of the particle is constant.
B The force on the particle is always perpendicular to the velocity of the particle.
C There is no displacement of the particle in the direction of the force.
D The kinetic energy of the particle is constant.
15. A simple pendulum and a mass-spring system are taken to the Moon, where the gravitational fieldstrength is less than on Earth. Which line, A to D, correctly describes the change, if any, in the period when compared with its value on Earth?

	period of pendulum	period of mass-spring system
A	decrease	decrease
B	increase	increase
C	no change	decrease
D	increase	no change

16. When a mass M attached to a spring X, as shown in Figure 1, is displaced downwards and released it oscillates with time period T. An identical spring is connected in series and the same mass M is attached, as shown in Figure 2.

What is the new time period?

A $\frac{T}{2}$
B $\frac{T}{\sqrt{2}}$

For more help, please visit www.exampaperspractice.co.uk

```
C }\sqrt{}{2T
D 2T
```

17. For a particle moving in a circle with uniform speed, which one of the following statements is incorrect?

A There is no displacement of the particle in the direction of the force.
B The force on the particle is always perpendicular to the velocity of the particle.
C The velocity of the particle is constant.
D The kinetic energy of the particle is constant
18. A revolving mountain top restaurant turns slowly, completing a full rotation in 50 minutes. A man issitting in the restaurant 15 m from the axis of rotation. What is the speed of the man relative to a stationary point outside the restaurant?

A $\quad \frac{\pi}{100} \mathrm{~m} \mathrm{~s}^{-1}$
B $\frac{3 \pi}{5} \mathrm{~m} \mathrm{~s}^{-1}$
C $\quad \frac{\pi}{200} \mathrm{~m} \mathrm{~s}^{-1}$
D $\frac{\pi}{1500} \mathrm{~m} \mathrm{~s}^{-1}$
19. A particle of mass 0.20 kg moves with simple harmonic motion of amplitude $2.0 \times 10^{-2} \mathrm{~m}$. If thetotal energy of the particle is $4.0 \times 10^{-5} \mathrm{~J}$, what is the time period of the motion?

A $\frac{\pi}{4}$ seconds
B $\frac{\pi}{2}$ seconds

PRACTICE π seconds

C
D $\quad 2 \pi$ seconds
20. The graph shows the variation in displacement with time for an object moving with simpleharmonic motion.

What is the maximum acceleration of the object?
A $\quad 0.025 \mathrm{~m} \mathrm{~s}^{-2}$
B $\quad 0.99 \mathrm{~m} \mathrm{~s}^{-2}$
C $\quad 2.5 \mathrm{~m} \mathrm{~s}^{-2}$
D $\quad 9.8 \mathrm{~m} \mathrm{~s}^{-2}$

[^0]: Time Allowed: 30min

