

## 6.1 Circular Motion

### **Question Paper**



## **Exam Papers Practice**

To be used by all students preparing for DP IB Physics SL Students of other boards may also find this useful



A particle of mass *m* moves in a circle of radius *r* at uniform speed, taking time *T* for each revolution. What is the kinetic energy of the particle?

- A.  $2mr\pi f^2$
- B.  $mr^2 \pi^2 f^2$
- C.  $2mr^2\pi^2 f^2$
- D.4 $mr^2 \pi^2 f^2$

[1mark]

#### **Question 2**

A 0.05 kg ball is attached to an inextensible string and whirled overhead such that it rotates in a horizontal circle.

What is the centripetal force on the ball if the string is 0.1 m long and the ball has a time period of  $\frac{\pi}{10}$  s?

- A.1.0 N B. O.1 N C. 8.0 N
- D. 2.0 N

[1mark]

# **Exam Papers Practice**



A horizontal disc rotates uniformly at a constant angular velocity about a central axis normal to the plane of the disc.



Point X is on a distance 3L from the centre of the disc. Point Y is a distance L from the centre of the disc. Point Y has a linear speed v and a centripetal acceleration a.

What is the linear speed and centripetal acceleration of point X?

|    | Linear Speed o | of X | Acceleration of X |
|----|----------------|------|-------------------|
| Α. | Зv             |      | а                 |
| В. | V              |      | а                 |
| C. | Зv             |      | 3a                |
| D. | 2v             |      | 2a                |

[1 mark]

#### Question 4

A girl of mass 50 kg is standing on a roundabout 100 cm from the centre. The force of friction on the girl is 600 N. What is the time period if the roundabout is rotating uniformly?



[1mark]



A spinning top makes twenty revolutions in five minutes in a clockwise direction.

What is the angular velocity of the spinning top?

| Δ  | $2\pi$ |
|----|--------|
| ,  | 15     |
| B. | π      |
| D. | 150    |

- С.10п
- D. 1/15



[1 mark]

#### Question 6

A body moves in a circle with increasing angular velocity. At times t, the angles  $\theta$  swept out by the body added cumulatively from the same reference point and its angular velocities  $\omega$  are as follows:

| t/s | θ/rad | $\omega$ /rad s <sup>-1</sup> |
|-----|-------|-------------------------------|
| 5   | 2     | 0.4                           |
| 15  | 16    | 2.4                           |
| 25  | 42    | 4.4                           |
| 35  | 80 80 | 6.4                           |

The angular acceleration of the body:

- A. is constant at 0.2 rad s  $^{-2}$
- B. gradually decreases and is 6.25 rad s  $^{-2}$  when t = 15 s
- C. is constant at 0.4 rad s<sup>-2</sup>
- D. increases at a constant rate and is 0.2 rad s  $^{-2}$  when t = 15 s

[1mark]



A hammer thrower rotates a ball on a string in a circular path gradually increasing its angular velocity with each rotation.



When the hammer releases the ball, the subsequent path taken by the ball is

- A. a vertical circle
- B. a parabola in a horizontal plane
- C. a parabola in a vertical plane
- D. a straight line along a radius of the circle

#### Question 8

An object at the end of a steel rod rotates in a vertical circle at a constant angular velocity. Which of the following statements correctly describes the tension in the rod?

rs Practice

- A. it is greatest when the object is halfway up the circle
- B. it is greatest when the object is at the bottom of the circle
- C. it is unchanged throughout the motion
- D. it is greatest when the object is at the top of the circle

[1mark]



For a particle moving in a circle with uniform speed, which of the following statements is incorrect?

- A. The speed of the particle is constant
- B. The acceleration of the particle is perpendicular to its direction of motion
- C. The momentum of the particle is constant
- D. The particle is accelerating

#### [1mark]

#### **Question 10**

A satellite X of mass orbits the Earth with a period T and radius r and linear speed v. What will be the orbital period of satellite Y with mass m occupying an orbit with radius  $\frac{r}{2}$  and speed 2v as X?

