铛
 EXAM PAPERS PRACTICE

Boost your performance and confidence with these topic-based exam questions

Practice questions created by actual examiners and assessment experts

Detailed mark scheme
Suitable for all boards
Designed to test your ability and thoroughly prepare you

5.9 Advanced Integration

Exam Papers Practice

5.9.1 Integrating Further Functions

As with o ther problems in integration the results in this revision note may have further use such as

- evaluating a definite integral
- finding the constant of integration
- finding areas und er a curve, between a line and a curve orbetween two curves

Integrating with Reciprocal Trigonometric Functions

cosec (cosecant, csc), sec (secant) and cot (cotangent) are the reciprocal functions of sine, cosine and tangent respectively.

What are the antiderivatives involving reciprocaltrigonometric functions?

- $\int \sec ^{2} x d x=\tan x+c$
- $\int \sec x \tan x d x=\sec x+c$
- $\int \operatorname{cosec} x \cot x d x=-\operatorname{cosec} x+c$
- $\int \operatorname{cosec}^{2} x d x=-\cot x+c$
- These are not given in the formula booklet directly
- they are listed the otherwayround as 'standard derivatives'
- be careful with the negatives in the last two results
- and remember "+c"!

Howdo lintegrate these if a linearfunction of x is involved?

- All integration rules could applyalongside the results above
- The use of reverse chain rule is particularly common
- Forlinear functions the following results can be useful
- $\int \sec ^{2}(a x+b) \mathrm{d} x=\frac{1}{a} \tan (a x+b)+c$
- $\int \sec (a x+b) \tan (a x+b) \mathrm{d} x=\frac{1}{a} \sec (a x+b)+\mathrm{c}$
- $\int \operatorname{cosec}(a x+b) \cot (a x+b) \mathrm{d} x=-\frac{1}{a} \operatorname{cosec}(a x+b)+\mathrm{c}$
- $\int \operatorname{cosec}^{2}(a x+b) \mathrm{d} x=-\frac{1}{a} \cot (a x+b)+c$
- These are not in the formula booklet
- theycan be deduced byspotting reverse chain rule
- they are not essential to remember but can make problems easier

- Exam Tip

- Even if you think yo u have remembered these antiderivatives, always use the formula booklet to double check
- those squares, negatives and "lover"'s are easyto get muddled up!
- Rememberto use 'adjust' and 'compensate' for reverse chain rule when coefficients are involved

Worked example

The graph of $y=f(x)$ where $f(x)=\int 2 \sec ^{2} 5 x \mathrm{~d} x$ passes through the point $\left(\frac{\pi}{3}, 0\right)$. Show that $5 y=2(\sqrt{3}+\tan 5 x)$.

Reverse chain rule is needed

$$
\begin{array}{r}
\int 2 \sec ^{2} 5 x d x=2 \times \frac{1}{5} \int 5 \sec ^{2} 5 x d x \\
\text { 'compensate' }
\end{array}
$$

$$
\therefore y=\frac{2}{5} \tan 5 x+c \quad \quad \int \sec ^{2} x d x=\tan x+c \text { " }
$$

$$
\text { At } x=\frac{\pi}{3}, y=0, \quad 0=\frac{2}{5} \tan \frac{5 \pi}{3}+c
$$

$$
c=\frac{2 \sqrt{3}}{5}
$$

$$
\therefore y=\frac{2}{5} \tan 5 x+\frac{2}{5} \sqrt{3}
$$

$$
y=\frac{2}{5}(\tan 5 x+\sqrt{3})
$$

$$
\therefore 5 y=2(\sqrt{3}+\tan 5 x)
$$

Integrating with Inverse Trigonometric Functions

arcsin, arccos and arctan are (one-to-one) functions defined as the inverse functions of sine, cosine and tangent respectively.

What are the antiderivatives involving the inverse trigonometric functions?

- $\int \frac{1}{\sqrt{1-x^{2}}} d x=\arcsin x+c$
- $\int \frac{1}{1+x^{2}} d x=\arctan x+c$
- Note that the antiderivative involving $\arccos X$ would arise from

$$
\int-\frac{1}{\sqrt{1-x^{2}}} \mathrm{~d} x=\arccos x+c
$$

- However, the negative can be treated as a coefficient of -land so

$$
\int-\frac{1}{\sqrt{1-x^{2}}} \mathrm{~d} x=-\int \frac{1}{\sqrt{1-x^{2}}} \mathrm{~d} x=-\arcsin x+c
$$

- Similarly,

$$
\int \frac{1}{\sqrt{1-x^{2}}} \mathrm{~d} x=-\int-\frac{1}{\sqrt{1-x^{2}}} \mathrm{~d} x=-\arccos x+c
$$

- Unless a question requires otherwise, stick to the first two results
- These are listed in the formula booklet the otherwayround as 'standard derivatives'
- For the antid erivative involving $\arctan X$, note that $\left(1+X^{2}\right)$ is the same as $\left(x^{2}+1\right)$

Howdolintegrate these expressions if the denominatoris not in the correct form?

- Some problems involve integrands that look very similar to the above
- but the denominato rs start with a number other than one
- there are three particular cases to consider
- The first two cases involve denominators of the form $a^{2} \pm(b x)^{2}$ (with or without the square root!)
- In the case $\boldsymbol{b}=1$ (i.e. denominator of the form $\boldsymbol{a}^{2} \pm X^{2}$) there are two stand ard results
- $\int \frac{1}{a^{2}+x^{2}} \mathrm{~d} x=\frac{1}{a} \arctan \left(\frac{x}{a}\right)+c$
- $\int \frac{1}{\sqrt{a^{2}-x^{2}}} \mathrm{~d} x=\arcsin \left(\frac{x}{a}\right)+c,|x|<a$
- Both of these are given in the formula booklet
- Note in the first result, $a^{2}+x^{2}$ could be written $X^{2}+a^{2}$
- In cases where $\boldsymbol{b} \neq \mathbf{1}$ then the integrand can be rewritten by taking a factor of \boldsymbol{a}^{2}
- the factor will be a constant that can be taken outside the integral
- the remaining denominator will then start with 1
- e.g. $9+4 x^{2}=9\left(1+\frac{4}{9} x^{2}\right)=9\left(1+\left(\frac{2}{3} x\right)^{2}\right)$
- The third type of problem occurs when the denominator has a (three term) quadratic
- i.e. denominators of the form $\boldsymbol{a} \boldsymbol{x}^{\mathbf{2}}+\boldsymbol{b} \boldsymbol{x}+\boldsymbol{c}$
(a rearrangement of this is more likely)
- the integrand can be rewritten by completing the square
- e.g. $5-x^{2}+4 x=5-\left(x^{2}+4 x\right)=5-\left[(x+2)^{2}-4\right]=9-(x+2)^{2}$

This can then be dealt with like the second type of problem above with " \boldsymbol{X} " replaced by " $x+2 "$

- This works since the derivative of $\boldsymbol{X}+2$ is the same as the derivative of \boldsymbol{X}

There is essentiallyno reverse chain rule to consider

- Exam Tip

- Always start integrals involving the inverse trig functions byrewriting the denominatorinto a recognisable form
- The numerator and/or anyconstant factors can be dealt with afterwards, using 'adjust' and 'compensate' if necessary

Worked example

a) Find $\int \frac{1}{9+x^{2}} d x$.

The denominator is of the form $a^{2}+x^{2}$ so use the result from the formula booklet: " $\int \frac{1}{a^{2}+x^{2}} d x=\frac{1}{a} \arctan \left(\frac{x}{a}\right)+c$ "

$$
\begin{aligned}
& \therefore \int \frac{1}{9+x^{2}} d x=\frac{1}{3} \arctan \left(\frac{x}{3}\right)+c \\
& 9=3^{2}
\end{aligned}
$$

b) Find $\int \frac{1}{\sqrt{5-x^{2}+4 x}} \mathrm{~d} x$.

The denominator is a three term quadratic so complete the square

$$
\begin{aligned}
5-x^{2}+4 x & =5-\left[x^{2}-4 x\right] \\
& =5-\left[(x-2)^{2}-4\right] \\
& =9-(x-2)^{2}
\end{aligned}
$$

ए)
Copyright
© 2024 Exam Papers Practice
Now wite the integral into a recognisable form

$$
I=\int \frac{1}{\sqrt{5-x^{2}+4 x}} d x=\int \frac{1}{\sqrt{9-(x-2)^{2}}} d x
$$

Then use a slight adaption to the result from the formula booklet " $\int \frac{1}{\sqrt{a^{2}-x^{2}}} d x=\arcsin \left(\frac{x}{a}\right)+c$ "

$$
\therefore I=\arcsin \left(\frac{x-2}{3}\right)+c
$$

Integrating Exponential \& Logarithmic Functions

Exponential functions have the general form $y=a^{x}$. Special case: $y=\mathrm{e}^{x}$.
Logarithmic functions have the general form $y=\log _{a} x$. Special case: $y=\log _{\mathrm{e}} x=\ln x$.

What are the antiderivatives of exponential and logarithmic functions?

- Those involving the special cases have been met before
- $\int \mathrm{e}^{x} \mathrm{~d} x=\mathrm{e}^{x}+c$
- $\int \frac{1}{x} \mathrm{~d} x=\ln |x|+c$
- These are given in the formula booklet
- Also
- $\int a^{x} \mathrm{~d} x=\frac{1}{\ln a} a^{x}+c$
- This is also given in the formula booklet
- Byreverse chain rule
- $\int \frac{1}{x \ln a} \mathrm{~d} x=\log _{a}|x|+c$
- This is not in the formula booklet
- but the derivative of $\log _{a} X$ is given
- There is also the reverse chain rule to look out for
- this occurs when the numerator is (almost) the derivative of the deno minator
- $\int \frac{f^{\prime}(x)}{f(x)} \mathrm{d} x=\ln |f(x)|+c$

Howdo lintegrate exponentials and logarithms with a linearfunction of xinvolved?

- Forthe special cases involving e and \ln
- $\int \mathrm{e}^{a x+b} \mathrm{~d} x=\frac{1}{a} \mathrm{e}^{a x+b}+\mathrm{c}$
- $\int \frac{1}{a x+b} \mathrm{~d} x=\frac{1}{a} \ln |a x+b|+c$
- Forthe general cases
- $\int a^{p x+q} \mathrm{~d} x=\frac{1}{p \ln a} a^{p x+q}+c$
- $\int \frac{1}{(p x+q) \ln a} \mathrm{~d} x=\frac{1}{p} \log _{a}|p x+q|+c$
- These four results are not in the formula booklet but all can be derived using 'adjust and compens ate' from reverse chain rule

- Exam Tip

- Rememberto always use the modulus signs for logarithmic terms in the antiderivative
- Once it is deduced that $g(x)$ in $\ln |g(x)|$, say, is guaranteed to be positive, the modulus signs can be replaced with brackets

Worked example

a) Show that $\int_{1}^{2} 4^{x} d x=\frac{6}{\ln 2}$

From the formula booklet, " $\int a^{x} d x=\frac{1}{\ln a} a^{x}+c$ "

$$
\therefore \int_{1}^{2} 4^{x} d x=\left[\frac{1}{\ln 4} 4^{x}\right]_{1}^{2}
$$

$$
=\frac{16}{\ln 4}-\frac{4}{\ln 4}
$$

$$
=\frac{12}{\ln 4}
$$

$$
=\frac{12}{2 \ln 2} \quad \ln 4=\ln 2^{2}=2 \ln 2
$$

$$
\therefore \int_{1}^{2} 4^{x} d x=\frac{6}{\ln 2}
$$

b) Find $\int \frac{1}{(2 x-1) \ln 3} \mathrm{~d} x$.

The result $\int \frac{1}{(p x+q) \ln a} d x=\frac{1}{p} \log _{a}|p x+q|+c$
could be used but this is not in the formula booklet.
Alternatively use reverse chain rule with the result " $f(x)=\log _{a} x, \quad f^{\prime}(x)=\frac{1}{x \ln a}$ " which is
given in the formula booklet!

$$
\begin{aligned}
& \therefore I=\int \frac{1}{(2 x-1) \ln 3} d x=\frac{1}{2} \int_{\int^{\text {coadiost' }}} \frac{2^{\text {compensate }}}{(2 x-1) \ln 3} d x \\
& \therefore I=\frac{1}{2} \log _{3}|2 x-1|+c
\end{aligned}
$$

remember the modulus signs...

5.9.2 Further Techniques of Integration

Integration by Substitution

What is integration by substitution?

- Integration bysubstitution is used when an integrand where reverse chain rule is either not obvious oris not spotted
- in the latter case it is like a "back-up" method for reverse chain rule

Howdoluse integration by substitution?

- For instances where the substitution is not obvious it will be given in a question
- e.g. Find $\int \cot x d x$ using the substitution $u=\sin x$
- Substitutions are usually of the form $u=g(x)$
- in some cases $u^{2}=g(x)$ and other variations are more convenient
- as these would not be obvious, they would be given in a question
- if need be, this can be rearranged to find \boldsymbol{X} in terms of \boldsymbol{U}
- Integration by substitution then involves rewriting the integral, including " $\mathrm{d} \boldsymbol{X}$ " in terms of \boldsymbol{U} STEP 1
Name the integral to save rewriting it later
Identify the given substitution $u=g(X)$
STEP 2
Find $\frac{\mathrm{d} u}{\mathrm{~d} x}$ and rearrange into the form $f(u) \mathrm{d} u=g(x) \mathrm{d} x$ such that (some of) the integral can be rewritten interms of \boldsymbol{U}

STEP 3
If limits are involved, use $u=g(X)$ to change them from X values to U values
STEP 4
Rewrite the integral so everything is in terms of \boldsymbol{U} rather than \boldsymbol{X}
This is the step when it maybecome apparent that \boldsymbol{X} is needed in terms of \boldsymbol{U}
STEP 5
Integrate with respect to u and either rewrite in terms of \boldsymbol{X} or apply the limits using their \boldsymbol{U} values

- For quotients the substitution usually involves the denominator
- It maybe necessary to use 'adjust and compensate' to deal with any coefficients in the integrand
- Although $\frac{\mathrm{d} u}{\mathrm{~d} \boldsymbol{x}}$ can be treated like a fraction it should be appreciated that this is a 'shortcut' and the maths behind it is beyond the scope of the IB course

- Exam Tip

- If a substitution is not given in a question, it is usuallybecause it is obvious
- If you can't see anything obvious, oryou find that your choice of substitution doesn't reduce the integrand to something easyto integrate, consider that it may not be a substitution question

Worked example

Use the substitution $u=(1+2 x)$ to evaluate $\int_{0}^{1} x(1+2 x)^{7} \mathrm{~d} x$.

ExamPapers Pra
Copyright
© 2024 Exam Papers Practice

Exam Papers Practice

STEP 1: Name the integral, identify the substitution

$$
\begin{aligned}
& I=\int_{0}^{1} x(1+2 x)^{7} d x \\
& u=1+2 x
\end{aligned}
$$

STEP 2: Find $\frac{d u}{d x}$ and rearrange

$$
\begin{aligned}
& \frac{d u}{d x}=2 \\
& \frac{1}{2} d u=d x
\end{aligned}
$$

STEP 3: Change limits from x values to u values

$$
\begin{array}{ll}
x=0, & 0=1+2(0)=1 \\
x=1, & 0=1+2(1)=3
\end{array}
$$

STEP 4: Rewrite the integral, find x in terms of u

$$
I=\int_{0}^{3} \frac{1}{2}(v-1) u^{7} \times \frac{1}{2} d v=\frac{1}{4} \int_{1}^{3}\left(u^{8}-v^{7}\right) d u
$$

- 2

Copyright
© 2024 Exam Papers Practice
STEP 5: Integrate and evaluate

$$
\begin{aligned}
& I=\frac{1}{4}\left[\frac{0^{9}}{9}-\frac{v^{8}}{8}\right]_{1}^{3} \\
& I=\frac{1}{4}\left[\left(\frac{3^{9}}{9}-\frac{3^{8}}{8}\right)-\left(\frac{1^{9}}{9}-\frac{1^{8}}{8}\right)\right] \\
& \therefore I=\frac{6151}{18}
\end{aligned}
$$

Integration by Parts

What is integration by parts?

- Integration by parts is generally used to integrate the product of two functions
- however reverse chain rule and/or substitution should be considered first
- e.g. $\int 2 x \cos \left(x^{2}\right) d x$ can be solved using reverse chain rule or the substitution

$$
u=x^{2}
$$

- Integration by parts is essentially 'reverse product rule'
- whilst everyproduct can be differentiated, not every product can be integrated (analytically)

What is the formula forintegration by parts?

$\int u \frac{\mathrm{~d} v}{\mathrm{~d} x} \mathrm{~d} x=u v-\int v \frac{\mathrm{~d} u}{\mathrm{~d} x} \mathrm{~d} x$

- This is given in the formula booklet alongside its alternative form $\int u \mathrm{~d} v=u v-\int v \mathrm{~d} u$

How do luse integration byparts?

- For a given integral \boldsymbol{U} and $\frac{\mathrm{d} \boldsymbol{V}}{\mathrm{d} \boldsymbol{X}}$ (rather than \boldsymbol{U} and \boldsymbol{V}) are assigned functions of \boldsymbol{X}
- Generally, the function that becomes simpler when differentiated should be as signed to u
- There are various stages of integrating in this method
- only one overall constant of integration ("+c") is required
- put this in at the last stage of working
- if it is a definite integral then " $+C$ " is not required at all STEP 1
Name the integral if it doesn't have one already!
This saves having to rewrite it several times - lis often used for this purpose.
e.g. $I=\int x \sin x d x$

STEP 2
Assign u and $\frac{d V}{d X}$.

Differentiate u to find $\frac{\mathrm{d} u}{\mathrm{~d} x}$ and integrate $\frac{\mathrm{d} v}{\mathrm{~d} X}$ to find V

$$
u=x \quad V=-\cos x
$$

e.g. $\frac{\mathrm{d} u}{\mathrm{~d} x}=1 \quad \frac{\mathrm{~d} v}{\mathrm{~d} x}=\sin x$

STEP 3
Apply the integration by parts formula
e.g. $I=-x \cos x-\int-\cos x d x$

STEP 4
Work out the second integral, $\int V \frac{\mathrm{~d} u}{\mathrm{~d} x} \mathrm{~d} x$
Now include a "+c" (unless definite integration)
e.g. $I=-x \cos x+\sin x+c$

STEP 5
Simplify the answerif possible or apply the limits fordefinite integration e.g. $I=\sin x-x \cos x+c$

- In trickier problems other rules of differentiation and integration may be needed
- chain, product orquotient rule
- reverse chain rule, substitution

Can integration by parts be used when there is only a single function?

- Some single functions (non-products) are awkward to integrate directly
- e.g. $y=\ln x, y=\arcsin x, y=\arccos x, y=\arctan x$
- These can be integrated using parts however
- rewrite as the product ' $1 \times f(x)$ ' and choose $u=f(x)$ and $\frac{\mathrm{d} v}{\mathrm{~d} x}=1$
- lis easyto integrate and the functions above have standard derivatives listed in the formula booklet

(9) Exam Tip

- If $\ln X$ orone of the inverse trig functions are one of the functions involved in the product then these should be assigned to " u " when applying parts
- They are (realtively) easyto differentiate (to find u^{\prime}) but are awkward to integrate

Worked example

a) Find $\int 5 x \mathrm{e}^{3 x} \mathrm{~d} x$.

STEP I: Name the integral

$$
I=\int 5 x e^{3 x} d x=5 \int x e^{3 x} d x
$$

STEP 2: Assign u and v^{\prime}

$$
\text { Find } u \text { and } v
$$

$$
u=x \quad v=\frac{1}{3} e^{3 x} \text { (reverse chain rule) }
$$

$$
v^{\prime}=1 \int_{x} v^{\prime}=e^{3 x}
$$

STEP 3: APply the integration by parts formula

$$
I=5\left[\frac{1}{3} x e^{3 x}-\int \frac{1}{3} e^{3 x} d x\right]
$$

STEP 4: Work out the second integral

Ex

$$
I=5\left[\frac{1}{3} x e^{3 x}-\frac{1}{9} e^{3 x}+c\right] \text { include " }+c^{\prime \prime} \text { at last working stage }
$$

Copyright
(C) 2024 Exam Papers: Pecticelify
STEP 5: Simplify

$$
I=\frac{5}{9} e^{3 x}(3 x-1)+c
$$

b) Show that $\int 8 x \ln x d x=2 x^{2}\left(1+\ln x^{2}\right)+c$.

Exam Papers Practice

STEP 1: Name the integral

$$
I=\int 8 x \ln x d x
$$

STEP 2: Assign u and $v^{\prime}-a s \ln$ is involved, $u=\ln x$

$$
\text { Find } v \text { and } v
$$

$$
\begin{array}{ll}
u=\ln x & v=4 x^{2} \\
u^{\prime}=\frac{1}{x} & v^{\prime}=8 x
\end{array}
$$

STEP 3: Apply the integration by parts formula

$$
I=4 x^{2} \ln x-\int 4 x^{2} \times \frac{1}{x} d x=4 x^{2} \ln x-\int 4 x d x
$$

STEP 4: Work out the second integral, include " $+c$ " at this stage $I=4 x^{2} \ln x-2 x^{2}+c$

STEP 5: Simplify
$I=2 x^{2}(2 \ln x-1)+c$
$\therefore I=2 x^{2}\left(\ln x^{2}-1\right)+c$

-)

Papers Practice

Copyright
© 2024 Exam Papers Practice

Repeated Integration by Parts

When will Ihave to repeat integration by parts?

- In some problems, applying integration by parts still leaves the second integral as a pro duct of two functions of \boldsymbol{X}
- integration by parts will need to be applied again to the second integral
- This occurs when one of the functions takes more than one derivative to become simple enough to make the second integral straightforward
- These functions usually have the form $X^{2} g(X)$

How do lapply integration byparts more than once?

STEP 1
Name the integral if it doesn't have one already!
STEP 2
Assign u and $\frac{\mathrm{d} v}{\mathrm{~d} \boldsymbol{x}}$. Find $\frac{\mathrm{d} u}{\mathrm{~d} \boldsymbol{x}}$ and \boldsymbol{V}

STEP 3
Apply the integration by parts formula
STEP 4
Repeat STEPS 2 and 3 for the second integral
STEP 5
Work out the second integral and include a " + c" if neces sary
STEP 6
Simplify the answer or apply limits

What if neither function ever becomes simpler when differentiating?

- It is possible that integration byparts will end up in a seemingly endless loop

Copyright considerthe product $\mathrm{e}^{X} \sin X$

- the derivative of e^{x} is e^{X}
- no matter how manytimes a function involving e^{X} is differentiated, it will still involve e^{X}
- the derivative of $\sin X$ is $\cos \boldsymbol{X}$
- $\cos X$ would then have derivative $-\sin X$, and so on
- no matter how many times a function involving $\sin X$ or $\cos X$ is differentiated, it will still involve $\sin x$ or $\cos x$
- This loop can be trapped byspotting when the second integral becomes identical to (ora multiple of) the original integral
- naming the original integral (I) at the start helps
- Ithen appears twice in integration by parts
- e.g. $I=g(x)-I$
where $g(X)$ are parts of the integral not requiring further work
- It is then straightforward to rearrange and solve the problem
- e.g. $2 I=g(x)+c$
$I=\frac{1}{2} g(x)+c$
Page 16 of 33
For more help visit our website www.exampaperspractice.co.uk

Exam Papers Practice

Worked example

a) Find $\int x^{2} \cos x d x$.

STEP 1: Name the integral
$I=\int x^{2} \cos x d x$
STEP 2: Assign u and v^{\prime}
Find u and v

$$
\begin{array}{ll}
u=x^{2} & v=\sin x \\
u^{\prime}=2 x
\end{array} \quad v^{\prime}=\cos x
$$

$$
x^{2} \text { becomes 'simpler' when differentiated }
$$

STEP 3: Apply the integration by parts formula

$$
I=x^{2} \sin x-2 \int x \sin x d x
$$

STEP 4: Repeat STEPS 2 and 3 for the second integral

$$
\begin{array}{ll}
u=x & v=-\cos x \\
u^{\prime}=1 & v^{\prime}=\sin x \\
\text { Copyright } \quad I=x^{2} \sin x-2\left[-x \cos x-\int-\cos x d x\right]
\end{array}
$$

STEP 5: Work out the second integral now it is straightforward

$$
I=x^{2} \sin x+2 x \cos x-2 \sin x+c
$$

STEP 6: Simplify

$$
I=\left(x^{2}-2\right) \sin x+2 x \cos x+c
$$

b) Find $\int \mathrm{e}^{x} \sin x d x$.

Exam Papers Practice

STEP 1: Name the integral

$$
I=\int e^{x} \sin x d x
$$

STEP 2: Assign u and v '. Neither function becomes simpler when differentiated. Find u and v.

$$
\begin{array}{ll}
u=e^{x} & v=-\cos x \\
u^{\prime}=e^{x} & v^{\prime}=\sin x
\end{array}
$$

STEP 3: Apply the integration by parts formula

$$
I=-e^{x} \cos x-\int-e^{x} \cos x d x=-e^{x} \cos x+\int e^{x} \cos x d x
$$

STEP 4: Repeat STEPS 2 and 3 for the second integral

$$
\begin{array}{ll}
u=e^{x} & v=\sin x \\
u^{\prime}=e^{x} & v^{\prime}=\cos x \\
I=-e^{x} \cos x+\left[e^{x} \sin x-\int e^{x} \sin x d x\right]
\end{array}
$$

Spot that this is the san
the original question, i
Copyright
(0)2024 Exam Pastes 5: "Work out" the second integral, include "+c" at this stage

$$
I=e^{x} \sin x-e^{x} \cos x-I+c
$$

STEP 6: Simplify

$$
2 I=e^{x}(\sin x-\cos x)+c
$$

$$
\left.\therefore I=\frac{1}{2} e^{x}(\sin x-\cos x)+c_{1} \quad \text { (where } c_{1}=\frac{1}{2} c\right)
$$

5.9.3 Inte grating with Partial Fractions

Integrating with Partial Fractions

What arepartialfractions?

- Partial fractions arise when a quotient is rewritten as the sum of fractions
- The process is the opposite of adding or subtracting fractions
- Each partial fraction has a denominatorwhich is a linear fact or of the quotient's denominator
- e.g. A quotient with a denominator of $X^{2}+4 x+3$
- factorisesto $(x+1)(x+3)$
- so the quotient will split into two partial fractions
- one with the (linear) denominator $(x+1)$
- one with the (linear) denominator $(x+3)$

Howdo Iknow when to use partial fractions in integration?

- For this course, the denominators of the quotient will be of quadratic form
- i.e. $f(x)=a x^{2}+b x+c$
- check to see if the quotient can be written in the form $\frac{f^{\prime}(x)}{f(x)}$
- in this case, reverse chain rule applies
- If the denominator does not factorise then the inverse trigonometric functions are involved

Howdo lintegrate using partial fractions?

STEP 1
Write the quotient in the integrand as the sum of partial fractions
This involves factorising the deno minator, writing it as anidentity of two partial fractions and using values of \boldsymbol{X} to find their numerators
e.g. $I=\int \frac{1}{x^{2}+4 x+3} \mathrm{~d} x=\int \frac{1}{(x+1)(x+3)} \mathrm{d} x=\frac{1}{2} \int\left(\frac{1}{x+1}-\frac{1}{x+3}\right) \mathrm{d} x$

STEP 2
Integrate each partial fraction leading to an expression involving the sum of natural lo garithms
e.g. $I=\frac{1}{2} \int\left(\frac{1}{x+1}-\frac{1}{x+3}\right) \mathrm{d} x=\frac{1}{2}[\ln |x+1|-\ln |x+3|]+c$

STEP 3
Use the laws of logarithms to simplify the expression and/or apply the limits
(Simplifying first may make applying the limits easier)
e.g. $I=\frac{1}{2} \ln \left|\frac{x+1}{x+3}\right|+c$

- Byrewriting the constant of integration as a logarithm ($\boldsymbol{c}=\ln \boldsymbol{K}$, say) it is possible to write the final answer as a single term
e.g. $I=\frac{1}{2} \ln \left|\frac{x+1}{x+3}\right|+\ln k=\ln \sqrt{\left|\frac{x+1}{x+3}\right|}+\ln k=\ln \left(k \sqrt{\left|\frac{x+1}{x+3}\right|}\right)$

(-) Exam Tip

- Always check to see if the numeratorcan be written as the derivative of the denominator
- If so then it is reverse chain rule, not partial fractions
- Use the number of marks a question is worth to helpjudge how much work should be involved

Exam Papers practice
© 2024 Exam Papers Practice

Worked example

Find $\int \frac{3 x+1}{x^{2}+3 x-10} \mathrm{~d} x$.

The integrand is NOT of the form $\frac{f^{\prime}(x)}{f(x)}$ but the denominator does factorise
STEP I: Write the quotient as partial fractions

$$
\begin{aligned}
& \frac{3 x+1}{x^{2}+3 x-10} \equiv \frac{A}{x+5}+\frac{B}{x-2} \\
& \quad 3 x+1 \equiv A(x-2)+B(x+5) \\
& \text { Let } x=2, \quad 7=7 B, \quad B=1 \\
& \text { Let } x=-5, \quad-14=-7 A, \quad A=2 \\
& \therefore I=\int \frac{3 x+1}{x^{2}+3 x-10} d x=\int\left(\frac{2}{x+5}+\frac{1}{x-2}\right) d x
\end{aligned}
$$

Ex a
STEP 2: Integrate the partial fractions

$$
I=2 \ln |x+5|+\ln |x-2|+c
$$

Copyright
STEP 3: Simplify using laws of logarithms

$$
I=\ln (x+5)^{2}+\ln |x-2|+c
$$

$\therefore I=\ln \left|(x+5)^{2}(x-2)\right|+c$

5.9.4 Advanced Applications of Inte gration

Area Between Curve \& y-axis

What is meant by the area between a curve and the y-axis?

- The area referred to is the region bounded by
- the graph of $y=f(x)$
- the y-axis
- the horizontal line $y=a$
- the ho rizontal line $y=b$
- The exact area can be found by evaluating a definite integral
- The graph of $y=f(x)$ could be a straight line
- using basic shape area formulae may be easier than integration
- e.g. area of a trapezium: $A=\frac{1}{2} h(a+b)$

How do Ifind the area bet ween a curve and the y-axis?

- Use the formula

$$
A=\int_{a}^{b}|x| \mathrm{d} x
$$

- This is given in the formula booklet
- The function is normally given in the form $y=f(x)$
- so will need rearranging into the form $X=g(y)$
- a and b may not be given directly as could involve the X-axis ($\boldsymbol{y}=0$) and/or a ro ot of $x=g(y)$
- use a GDC to plot the curve, sketch it and highlight the are a to help STEP 1
Identify the limits a and b
Sketch the graph of $y=f(x)$ or use a GDC to do so, especially if a and b are not given directly in the question

STEP 2
Rearrange $y=f(x)$ into the form $x=g(y)$
This is similarto finding the inverse function $f^{-1}(x)$
STEP 3
Evaluate the formula to evaluate the integral and find the are a required
If using a GDC remember to include the modulus ($|\ldots|$) symbols around \boldsymbol{X}

- In trickier problems some (orall) of the area may be 'negative'
- this will be any area that is left of the \boldsymbol{y}-axis (negative \boldsymbol{X}-values)
- $|\boldsymbol{X}|$ makes such areas 'po sitive'
- a GDC will apply ' $|\boldsymbol{X}|^{\prime}$ automatically as long as the \mid... |are included
- otherwise, to apply ' $|\boldsymbol{X}|^{\prime}$, split the integral into positive and negative parts; write an integral and evaluate each part separately and add the mo dulus of each part to gether to give the total area

- Exam Tip

- Sketch and/or use your GDC to help visualise what the problem lo oks like

Worked example

Find the area enclosed by the curve with equation $y=2+\sqrt{x+4}$, the y-axis and the horizontal lines with equations $y=3$ and $y=6$.

STEP 1: Identify limits, sketch graph/use GDC From GDC.

STEP 2: Rearrange $y=f(x)$ into $x=g(y)$

$$
\begin{aligned}
& y=2+\sqrt{x+4} \\
& x=(y-2)^{2}-4=y^{2}-4 y+4-4 \\
& x=y^{2}-4 y
\end{aligned}
$$

STEP 3: Evaluate integral to find area
As some area 'is' negative, split the integral

$$
A=-\int_{3}^{4}\left(y^{2}-4 y\right) d y+\int_{4}^{6}\left(y^{2}-4 y\right) d y \quad \text { If vising } \in O C \text { you can }
$$ this area is negative' still do this in one go:

$$
\int_{3}^{6}\left|y^{2}-4 y\right| d y
$$

$$
\begin{aligned}
\therefore & A=\left[\frac{y^{3}}{3}-2 y^{2}\right]_{4}^{6}-\left[\frac{y^{3}}{3}-2 y^{2}\right]_{3}^{4} \\
& A=\left[(72-72)-\left(\frac{64}{3}-32\right)\right]-\left[\left(\frac{64}{3}-32\right)-(9-18)\right] \\
& A=\frac{32}{3}--\frac{5}{3} \\
& \therefore A=\frac{37}{3} \text { square units }
\end{aligned}
$$

Volumes of Revolution Around x-axis

What is a volume of revolution around the x-axis?

- A solid of revolution is formed when an area bound ed by a function $y=f(x)$ (and otherboundary equations) is rotated 2π radians $\left(360^{\circ}\right)$ around the X-axis
- The volume of revolution is the volume of this solid
- Be careful - the 'front' and 'back' of this solid are flat
- theywere created from straight (vertical) lines
- 3D sketches can be misleading

How do Isolve problems involving the volume of revolution around x-axis?

- Use the formula

$$
V=\pi \int_{a}^{b} y^{2} \mathrm{~d} x
$$

- This is given in the formula booklet
- Y is a function of X
- $X=a$ and $x=b$ are the equations of the (vertical) lines bounding the area
- If $\boldsymbol{X}=\boldsymbol{a}$ and $\boldsymbol{X}=\boldsymbol{b}$ are not stated in a question, the bound aries could involve the \boldsymbol{y}-axis ($x=0$) and/or a root of $y=f(x)$
- Use a GDC to plot the curve, sketch it and highlight the area to help
- Visualising the solid created is helpful
- Try sketching some functions and their solids of revolution to help STEP 1
Id entify the limits a and b
Sketching the graph of $y=f(x)$ or using a GDC to do so is helpful, especiallywhen a and b are not given directly in the question

STEP 2
Square y
STEP 3
Use the formula to evaluate the integral and find the volume of revolution An answer maybe required in exact form

(-) Exam Tip

- If the given function involves a square root(s), problems can seem quite daunting
- However, this is often deliberate, as the square root will be squared when applying the Volume of Revolution formula, and should leave the integrand as something more manageable
- Whether a diagram is given or not, using your GDC to plot the curve, limits, etc (where possible) can help you to visualise and make pro gress with problems

Exam Papers Practice

Worked example

Find the volume of the solid of revolution formed by rotating the region bounded by the graph of $y=\sqrt{3 x^{2}+2}$, the coordinate axes and the line $x=3$ by 2π radians around the x-axis. Give your answer as an exact multiple of π.

STEP 1: Identify limits, sketch graph/use GDC
From GDC.

STEP 2: Square y
$y^{2}=\left(\sqrt{3 x^{2}+2}\right)^{2}=3 x^{2}+2$

STEP 3: Find the volume

$$
\begin{aligned}
V=\pi \int_{0}^{3}\left(3 x^{2}+2\right) d x & =\pi\left[x^{3}+2 x\right]_{0}^{3} \\
& =\pi(27+6)
\end{aligned}
$$

$$
\therefore V=33 \pi \text { cubic units }
$$

Volumes of Revolution Around y-axis

What is a volume of revolution around the y-axis?

- Verysimilar to above, this is a solid of revolution which is formed when an area bounded by a function $y=f(x)$ (and other bound aryequations) is rotated 2π radians $\left(360^{\circ}\right)$ around the y axis
- The volume of revolution is the volume of this solid

Howdolsolve problems involving the volume of revolution aroundy-axis?

- Use the formula

$$
V=\pi \int_{a}^{b} x^{2} \mathrm{~d} y
$$

- This is given in the formula booklet
- The function is usually given in the form $y=f(x)$
- so will need rearranging into the form $x=g(y)$
- a and b may not be given directly as could involve the X-axis $(y=0)$ and/or a root of $X=g(y)$
- Use a GDC to plot the curve, sketch it and highlight the area to help
- Visualising the solid created is helpful

STEP 1
Identify the limits a and b
Sketching the graph of $y=f(x)$ or using a GDC to do so is helpful, especially if a and b are not given directly in the question

STEP 2
Rearrange $y=f(x)$ into the form $x=g(y)$
This is similar to finding the inverse function $f^{-1}(x)$
STEP 3
Square \boldsymbol{X}
STEP 4
Use the formula to evaluate the integral and find the volume of revolution An answermay be required in exact form

- Exam Tip

- If the given function involves a square root, problems can seem quite daunting
- This is often deliberate, as the square root will be squared when applying the Volume of Revolution formula and the integrand will then become more manageable
- Whether a diagram is given or not, using your GDC to plot the curve, limits, etc (where possible) can help you to visualise the problem and make pro gress

Worked example

Find the volume of the solid of revolution formed by rotating the region bounded by the graph of $y=\arcsin (2 x+1)$ and the coordinate axes by 2π radians around the y-axis. Give your answer to three signific ant figures.

STEP I: Identify limits, sketch graph/use GDC From GDC.

STEP 2: Rearrange $y=f(x)$ into $x=g(y)$

$$
y=\arcsin (2 x+1)
$$

$\sin y=2 x+1$
$x=\frac{1}{2}(\sin y-1)$

- STEP 3: Square x

$$
x^{2}=\frac{1}{4}(\sin y-1)^{2}
$$

Copyright
STE P Ha, Find the volume

$$
V=\pi \int_{0}^{\pi / 2} \frac{1}{4}(\sin y-1)^{2} d y
$$

As this is awkward, use your GDC but

- your $G D C$ will expect the integrand in terms of x - remember π !

$$
V=0.279754 \ldots
$$

$$
\therefore V=0.280 \text { cubic units }(3 \text { s.f. })
$$

5.9.5 Modelling with Volumes of Revolution

The volume of the solid of revolution formed by rotating an area through 2π radians around the X axis is $V=\pi \int_{a}^{b} y^{2} \mathrm{~d} x$, and forthe y-axis is $V=\pi \int_{a}^{b} x^{2} \mathrm{~d} y$. These are both given in the formula booklet.

Adding \& Subtracting Volumes

When would volumes of revolution need to be added or subtracted?

- The 'curve' bound ary of an area mayconsist of more than one function of \boldsymbol{X}
- Forexample
- the 'curve' bo und ary from $x=0$ to $x=3$ is $y=f(x)$
- the 'curve' bo und ary from $x=3$ to $x=6$ is $y=g(x)$
- So the total volume would be $V=\pi \int_{0}^{3}[f(x)]^{2} \mathrm{~d} x+\pi \int_{3}^{6}[g(x)]^{2} \mathrm{~d} x$
- The solid of revolution mayhave a 'hole'in it
- e.g. a 'toilet roll' shape would be the difference of two cylind ric al volumes

How do Iknow whet her to add or subtract volumes of revolution?

- When the area to be rotated around the \boldsymbol{X}-axis has more than one function defining its bound ary it can be trickier to tell whether to add or subtract volumes of revolution
- It will depend on the nature of the functions and theirpoints of intersection
- With help from a GDC, sketch the graph of the functions and highlight the area required

How do Isolve problems involving adding or subtracting volumes of revolution?

- Visualising the solid created becomes increasingly useful (but also trickier) for shapes generated © 2024 byseparate volumes of revolution
- Continue trying to sketch the functions and their solids of revolution to help STEP 1
Identify the functions $(y=f(x), y=g(x), \ldots)$ involved in generating the volume
Determine whether the separate volumes will need to be added or subtracted Identify the limits for each volume involved
Sketching the graphs of $y=f(x)$ and $y=g(x)$, orusing a GDC to do so, is helpful, especially when the limits are not given directly in the question

STEP 2

Square y for all functions $\left([f(x)]^{2},[g(x)]^{2}, \ldots\right)$
This step is not essential if a GDC can be used to calculate integrals and an exact answer is not required.

STEP 3

Use the appropriate volume of revolution formula foreach part, evaluate the definite integral and add or subtract as necess ary
The answer may be required in exact form

(9) Exam Tip

- A sketch of the graph, limits, etc is always helpful, whether one has been given in the question ornot
- Use your GDC where possible

Worked example

Find the volume of revolution of the solid formed by rotating the region enclosed by the positive coordinate axes and the graphs of $y=2^{x}$ and $y=4-2^{x}$ by 2π radians around the X-axis. Give your answer to three significant figures.

STEP 1: Identify functions, limits and whether to add or subtract use GDC to help sketch the graphs

$$
\text { For } R_{1}, a=0, b=1
$$

$$
\text { For } R_{2}, a=1, b=2
$$

STEP 2: Square all functions - this step is not required in this question STEP3: Use formula for each part, evaluate and add
$V=\pi \int_{0}^{1}\left(2^{x}\right)^{2} d x+\pi \int_{1}^{2}\left(4-2^{x}\right)^{2} d x$
Use your GDC to evaluate - to avoid typing errors evaluate each integral separately, store in memory, then add
$V=6.798540 \ldots+4.941881 . .=11.740 \ldots$
$\therefore V=11.7$ cubic units (3 sf.)

Modelling with Volumes of Revolution

What is meant by modelling volumes of revolution?

- Many everyd ayobjects such as buckets, beakers, vases and lamp shades can be modelled as a solid of revolution
- The volume of revolution of the solid can then be calculated
- An object that would usually stand upright can be mo delled horizontally so its volume of revolution can be found

What modelling assumptions are there with volumes of revolution?

- The solids formed are usually the main shape of the body of the object
- For example, the handle on a bucket would not be included
- The thickness of the solid is negligible relative to the size of the object
- thickness will depend on the purpose of the object and the material it is made from

How do Isolve modelling problems with volumes of revolution?

- Visualising and sketching the solid formed can help with starting problems
- Familiarity with applying the volume of revolution fomulae
- around the x-axis: $V=\int_{a}^{b} y^{2} \mathrm{~d} x$
- around the y-axis: $V=\int_{a}^{b} x^{2} d y$
- The volume of revolution may involve add ing or subtracting partial volumes
- Questions may ask related questions in context
- g.A question about a bucket may ask about its capacity
- this would be measured in litres
- so a conversion of units maybe required
- $\left(100 \mathrm{~cm}^{3}=1\right.$ litre $)$

- Exam Tip

- Rememberto answerquestions directly
- In modelling scenarios, interpretation is often needed afterfinding the 'final answer'
- Modelling questions often ask about assumptions, criticisms and/orimprovements
- Examples
- it is assumed the thickness of the material an object is made from is negligible
- a 'smooth' curve maynot be a good model if the item is being made from a rough material
- other things may significantly reduce the volume found and impact conclusions
- e.g. Stones, plants and decorations placed in an aquarium will reduce the volume of waterneeded to fill it - and hence the number/size/type of fish it can accommodate maybe impacted

Worked example

The diagram below shows the region R, which is bounded bythe function $y=\sqrt{X-1}$, the lines $\boldsymbol{X}=2$ and $\boldsymbol{X}=10$, and the \boldsymbol{X}-axis.

Dimensions are in centimetres.

A mathematical mo del for a miniature vase is produced by rotating the region R through 2π radians around the x-axis.

Find the volume of the miniature vase, giving your answer in litres to three significant figures.
$\underset{\text { copright }}{\text { Exa Papers Practice }}$
© 2024 Exam Papers Practice

Exam Papers Practice

STEPI Identify limits

$$
a=2
$$

$$
b=10
$$

STEP 2 Square y

$$
y^{2}=(\sqrt{x-1})^{2}=x-1
$$

STEP 3 Evaluate the integral

$$
\begin{aligned}
V=\pi \int_{2}^{10}(x-1) d x & =\pi\left[0.5 x^{2}-x\right]_{2}^{10} \\
& =\pi[(50-10)-(2-2)] \\
& =40 \pi
\end{aligned}
$$

Now we need to interpret this in the context of the miniature vase

$$
\begin{aligned}
& V=40 \pi \mathrm{~cm}^{3} \\
& V=\frac{40 \pi}{1000} \text { litres } \quad 1000 \mathrm{~cm}^{3}=1 \text { litre } \\
& V=0.125663 \ldots
\end{aligned}
$$

Volume of the miniature vase is 0.126 litres (3 sf.)

