
5.9 Advanced Integration

AA HL



5.9.1 Integrating Further Functions

As with o ther pro blems in integratio n the results in this revisio n no te may have further uses such as

evaluating a de�nite integral

�nding the co nstant o f integratio n

�nding areas under a curve, between a line and a curve o r between two  curves

Integrating with Reciprocal Trigonometric Functions

co sec (cosecant, csc), sec (secant) and co t  (cotangent) are the recipro cal functio ns o f sine, co sine

and tangent respectively.

What  are t he ant iderivat ives involving  reciprocal t rig onom et ric f unct ions?

∫ sec2 x dx= tan x+c

∫ sec x tan x dx=sec x+c

∫ cosec x cot x dx=−cosec x+c

∫ cosec2 x dx=−cot x+c

These are no t  given in the f o rmula bo o klet  directly

they are listed the o ther way ro und as ‘standard derivatives’

be careful with the negatives in the last two  results

and remember “+c” !

How do I int eg rat e t hese if  a linear f unct ion of  x is involved?

All integratio n rules co uld apply alo ngside the results abo ve

The use o f reverse chain rule is particularly co mmo n

Fo r linear functio ns the fo llo wing results can be useful

∫ sec2 ( )ax+b dx=
1
a tan( )ax+b +c

∫ sec( )ax+b tan( )ax+b dx=
1
a sec( )ax+b +c

∫ cosec( )ax+b cot( )ax+b dx=−
1
a cosec( )ax+b +c

∫ cosec2 ( )ax+b dx=−
1
a cot( )ax+b +c

These are no t  in the fo rmula bo o klet

they can be deduced by spo tting reverse chain rule

they are no t essential to  remember but can make pro blems easier
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Exam T ip

Even if yo u think yo u have remembered these antiderivatives, always use the fo rmula bo o klet

to  do uble check

tho se squares, negatives and "1 o ver"'s are easy to  get muddled up!

Remember to  use 'adjust' and 'co mpensate' fo r reverse chain rule when co e�cients are

invo lved

Worked example

The graph o f y= f (x)  where f (x)=∫ 2sec2 5x dx  passes thro ugh the po int 
⎛
⎜

⎝

⎞
⎟

⎠

π
3 , 0 .

Sho w that 5y=2( )3+ tan 5x .
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Integrating with Inverse Trigonometric Functions

arcsin, arcco s  and arctan are (o ne-to -o ne) functio ns de�ned as the inverse functio ns o f sine,

co sine and tangent respectively.

What  are t he ant iderivat ives involving  t he inverse t rig onom et ric f unct ions?

∫ 1

1−x2
dx=arcsin x+c

∫ 1
1+x2 dx=arctan x+c

No te that the antiderivative invo lving arccos x  wo uld arise fro m

∫ −
1

1−x2
dx=arccos x+c

Ho wever, the negative can be treated as a co e�cient o f -1 and so

∫ −
1

1−x2
dx=−∫ 1

1−x2
dx=−arcsin x+c

Similarly,

∫ 1

1−x2
dx=−∫ −

1

1−x2
dx=−arccos x+c

Unless a questio n requires o therwise, stick to  the �rst two  results

These are listed in the f o rmula bo o klet  the o ther way ro und as ‘standard derivatives’

Fo r the antiderivative invo lving arctan x , no te that ( )1+x2  is the same as ( )x2+1

How do I int eg rat e t hese expressions if  t he denom inat or is not  in t he correct  f orm ?

So me pro blems invo lve integrands that lo o k very similar to  the abo ve

but the deno minato rs start with a number o ther than o ne

there are three particular cases to  co nsider

The �rst two  cases invo lve deno minato rs o f the fo rm a2± ( )bx 2  (with o r witho ut the square

ro o t!)

In the case b=1  (i.e. deno minato r o f the fo rm a2±x2 ) there are two  standard results

∫ 1
a2+x2 dx=

1
a arctan

⎛
⎜
⎜

⎝

⎞
⎟
⎟

⎠

x
a +c
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∫ 1

a2−x2
dx=arcsin

⎛
⎜
⎜

⎝

⎞
⎟
⎟

⎠

x
a +c, |x | <a

Bo th o f these are  given in the f o rmula bo o klet

No te in the �rst result, a2+x2  co uld be written x2+a2
In cases where b≠1  then the integrand can be rewritten by taking a f acto r o f a2

the facto r will be a co nstant that can be taken o utside the integral

the remaining deno minato r will then start with 1

e.g. 9+4x2=9
⎛
⎜
⎜

⎝

⎞
⎟
⎟

⎠
1+

4
9 x2 =9

⎛
⎜
⎜

⎝

⎞
⎟
⎟

⎠
1+

⎛
⎜
⎜

⎝

⎞
⎟
⎟

⎠

2
3 x

2

The third type o f pro blem o ccurs when the deno minato r has a (three term) quadratic

i.e.  deno minato rs o f the fo rm ax2+bx+c
(a rearrangement o f this is mo re likely)

the integrand can be rewritten by co mpleting the square

e.g. 5−x2+4x=5− ( )x2+4x =5− ⎡
⎢
⎣

⎤
⎥
⎦

( )x+2 2−4 =9− ( )x+2 2

This can then be dealt with like the seco nd type o f pro blem abo ve with "x " replaced by "

x+2"

This wo rks since the derivative o f x+2  is the same as the derivative o f x
There is essentially no  reverse chain rule to  co nsider

Exam T ip

Always start integrals invo lving the inverse trig functio ns by rewriting the deno minato r into  a

reco gnisable fo rm

The numerato r and/o r any co nstant facto rs can be dealt with afterwards, using 'adjust'

and 'co mpensate' if necessary
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a)       Find ∫ 1
9+x2 dx .

Worked example

b)       Find ∫ 1

5−x2+4x
dx .
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Integrating Exponential & Logarithmic Functions

Expo nential functio ns have the general fo rm y=ax .  Special case:  y=ex .

Lo garithmic functio ns have the general fo rm y= logax .  Special case:  y= logex= ln x .

What  are t he ant iderivat ives of  exponent ial and log arit hm ic f unct ions?

Tho se invo lving the special cases have been met befo re

∫ ex dx=ex+c

∫ 1
x dx= ln |x | +c

These are given in the f o rmula bo o klet

Also

∫ ax dx=
1
ln a ax+c

This is also  given in the f o rmula bo o klet

By reverse chain rule

∫ 1
xln a dx= loga |x | +c

This is no t  in the fo rmula bo o klet

but the derivative o f logax  is given

There is also  the reverse chain rule to  lo o k o ut fo r

this o ccurs when the numerato r is (almo st) the derivative o f the deno minato r

∫ f '(x)

f (x)

dx= ln 







f (x) +c

How do I int eg rat e exponent ials and log arit hm s wit h a linear f unct ion of  x involved?

Fo r the special cases invo lving e  and ln

∫ eax+b dx=
1
a eax+b+c

∫ 1
ax+b dx=

1
a ln 








ax+b +c

Fo r the general cases
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∫a px+q dx=
1

p ln a a px+q+c

∫ 1
( )px+q ln a dx=

1
p loga |px+q | +c

These fo ur results are no t  in the fo rmula bo o klet but all can be derived using ‘adjust and

co mpensate’ fro m reverse chain rule

Exam T ip

Remember to  always use the mo dulus signs fo r lo garithmic terms in the antiderivative

Once it is deduced that    in   , say, is guaranteed to  be po sitive, the

mo dulus signs can be replaced with brackets

Worked example

a)       Sho w that ∫
1

2
4x dx=

6
ln 2 .

b)       Find ∫ 1
( )2x−1 ln 3 dx .
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5.9.2 Further Techniques of Integration

Integration by Substitution

What  is int eg rat ion by subst it ut ion?

Integratio n by substitutio n is used when an integrand where reverse chain rule is either no t

o bvio us o r is no t spo tted

in the latter case it is like a “back-up” metho d fo r reverse chain rule

How do I use int eg rat ion by subst it ut ion?

Fo r instances where the substitutio n is no t o bvio us it will be given in a questio n

e.g.  Find ∫ cot x dx  using the substitutio n u=sin x

Substitutio ns are usually o f the fo rm u=g (x)

in so me cases u2=g (x)  and o ther variatio ns are mo re co nvenient

as these wo uld no t be o bvio us, they wo uld be given in a questio n

if need be, this can be rearranged to  �nd x  in terms o f u
Integratio n by substitutio n then invo lves rewriting the integral, including “dx ” in terms o f u

STEP 1

Name the integral to  save rewriting it later

Identify the given substitutio n u=g (x)

STEP 2

Find 
du
dx  and rearrange into  the fo rm f (u) du=g (x) dx  such that (so me o f ) the integral can

be rewritten in terms o f u

STEP 3

If limits are invo lved, use u=g (x)  to  change them fro m x  values to  u  values 

STEP 4

Rewrite the integral so  everything is in terms o f u  rather than x
This is the step when it may beco me apparent that x  is needed in terms o f u

STEP 5

Integrate with respect to  u and either rewrite in terms o f x  o r apply the limits using their u
values
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Fo r quo tients the substitutio n usually invo lves the deno minato r

It may be necessary to  use ‘adjust and co mpensate’ to  deal with any co e�cients in the integrand

Altho ugh 
du
dx  can be treated like a fractio n it sho uld be appreciated that this is a ‘sho rtcut’ and

the maths behind it is beyo nd the sco pe o f the IB co urse

Exam T ip

If a substitutio n is no t given in a questio n, it is usually because it is o bvio us

If yo u can't see anything o bvio us, o r yo u �nd that yo ur cho ice o f substitutio n do esn't

reduce the integrand to  so mething easy to  integrate, co nsider that it may no t be a

substitutio n questio n

Worked example

Use the substitutio n u= ( )1+2x  to  evaluate ∫
0

1
x ( )1+2x 7 dx .
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Integration by Parts

What  is int eg rat ion by part s?

Integratio n by parts is generally used to  integrate the pro duct o f two  functio ns

ho wever reverse chain rule and/o r substitutio n sho uld be co nsidered �rst

e.g. ∫ 2xcos( )x2 dx  can be so lved using reverse chain rule o r the substitutio n 

u=x2

Integratio n by parts is essentially ‘reverse pro duct rule’

whilst every pro duct can be di�erentiated, no t every pro duct can be integrated

(analytically)

What  is t he f orm ula f or int eg rat ion by part s?

∫ u
dv
dx dx=uv−∫ v

du
dx dx

This is given in the f o rmula bo o klet alo ngside its alternative fo rm ∫ u dv=uv−∫ v du

How do I use int eg rat ion by part s?

Fo r a given integral u  and 
dv
dx  (rather than u  and v ) are assigned functio ns o f x

Generally, the functio n that beco mes simpler when di�erentiated sho uld be assigned to  u
There are vario us stages o f integrating in this metho d

o nly o ne o verall co nstant o f integratio n (“+c”) is required

put this in at the last stage o f wo rking

if it is a de�nite integral then “+c” is no t required at all 

STEP 1

Name the integral if it do esn’t have o ne already!

This saves having to  rewrite it several times – I is o ften used fo r this purpo se.

e.g. I=∫ xsin x dx

STEP 2

Assign u  and 
dv
dx .
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Di�erentiate u  to  �nd 
du
dx  and integrate 

dv
dx  to  �nd v

e.g. 

u=x v=−cos x
du
dx =1

dv
dx =sin x

STEP 3

Apply the integratio n by parts fo rmula

e.g. I=−xcos x−∫ −cos x dx

STEP 4

Wo rk o ut the seco nd integral, ∫ v
du
dx dx

No w include a “+c” (unless de�nite integratio n) 

e.g. I=−xcos x +sin x+c

STEP 5

Simplify the answer if po ssible o r apply the limits fo r de�nite integratio n

e.g. I=sin x−xcos x+c

In trickier pro blems o ther rules o f di�erentiatio n and integratio n may be needed

chain, pro duct o r quo tient rule

reverse chain rule, substitutio n

Can int eg rat ion by part s be used when t here is only a sing le f unct ion?

So me single functio ns (no n-pro ducts) are awkward to  integrate directly

e.g. y= ln x , y=arcsin x , y=arccos x , y=arctan x
These can be integrated using parts ho wever

rewrite as the pro duct ‘1× f (x) ’ and cho o se u= f (x)  and 
dv
dx =1

1 is easy to  integrate and the functio ns abo ve have standard derivatives listed in the fo rmula

bo o klet

Exam T ip

If     o r o ne o f the inverse trig functio ns are o ne o f the functio ns invo lved in the pro duct

then these sho uld be assigned to  " " when applying parts

They are (realtively) easy to  di�erentiate (to  �nd ) but are awkward to  integrate
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Worked example

a)       Find ∫ 5xe3x dx .

b)       Sho w that ∫ 8xln x dx=2x2
( )1+ ln x2 +c .
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Repeated Integration by Parts

When will I have t o repeat  int eg rat ion by part s?

In so me pro blems, applying integratio n by parts still leaves the seco nd integral as a pro duct o f

two  functio ns o f x
integratio n by parts will need to  be applied again to  the seco nd integral

This o ccurs when o ne o f the functio ns takes mo re than o ne derivative to  beco me simple eno ugh

to  make the seco nd integral straightfo rward

These functio ns usually have the fo rm x2g (x)

How do I apply int eg rat ion by part s m ore t han once?

STEP 1

Name the integral if it do esn’t have o ne already!

STEP 2

Assign u  and 
dv
dx .  Find 

du
dx  and v

STEP 3

Apply the integratio n by parts fo rmula

STEP 4

Repeat STEPS 2 and 3 fo r the seco nd integral

STEP 5

Wo rk o ut the seco nd integral and include a “+c” if necessary

STEP 6

Simplify the answer o r apply limits

What  if  neit her f unct ion ever becom es sim pler when di�erent iat ing ?

It is po ssible that integratio n by parts will end up in a seemingly endless lo o p

co nsider the pro duct exsin x
the derivative o f ex  is ex

no  matter ho w many times a functio n invo lving ex  is di�erentiated, it will still invo lve ex
the derivative o f sin x  is cos x

cos x  wo uld then have derivative −sin x , and so  o n

no  matter ho w many times a functio n invo lving sin x  o r cos x  is di�erentiated, it will still

invo lve sin x  o r cos x
This lo o p can be trapped by spo tting when the seco nd integral beco mes identical to  (o r a

multiple o f ) the o riginal integral

naming the o riginal integral (I ) at the start helps

I  then appears twice in integratio n by parts

e.g. I=g (x)− I
where g (x)  are parts o f the integral no t requiring further wo rk

It is then straightfo rward to  rearrange and so lve the pro blem

e.g. 2I=g (x)+c

I=
1
2 g (x)+c
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a)       Find ∫ x2cos x dx .

Worked example

b)       Find ∫ exsin x dx .
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5.9.3 Integrating with Partial Fractions

Integrating with Partial Fractions

What  are part ial f ract ions?

Partial f ractio ns  arise when a quo tient is rewritten as the sum o f fractio ns

The pro cess is the o ppo site o f adding o r subtracting fractio ns

Each partial fractio n has a deno minato r which is a linear f acto r o f the quo tient’s deno minato r

e.g.  A quo tient with a deno minato r o f x2+4x+3
facto rises to  ( )x+1 ( )x+3
so  the quo tient will split into  two  partial fractio ns

o ne with the (linear) deno minato r ( )x+1
o ne with the (linear) deno minato r ( )x+3

How do I know when t o use part ial f ract ions in int eg rat ion?

Fo r this co urse, the deno minato rs o f the quo tient will be o f quadratic fo rm

i.e. f (x)=ax2+bx+c

check to  see if the quo tient can be written in the fo rm 
f '(x)

f (x)

in this case, reverse chain rule applies

If the deno minato r do es no t facto rise then the inverse trigo no metric f unctio ns  are invo lved

How do I int eg rat e using  part ial f ract ions?       

STEP 1

Write the quo tient in the integrand as the sum o f partial fractio ns

This invo lves facto rising the deno minato r, writing it as an identity o f two  partial fractio ns and

using values o f x  to  �nd their numerato rs

e.g. I=∫ 1
x2+4x+3

dx=∫ 1
( )x+1 ( )x+3 dx=

1
2∫

⎛
⎜
⎜

⎝

⎞
⎟
⎟

⎠

1
x+1 −

1
x+3 dx

STEP 2

Integrate each partial fractio n leading to  an expressio n invo lving the sum o f natural lo garithms

e.g. I=
1
2∫

⎛
⎜
⎜

⎝

⎞
⎟
⎟

⎠

1
x+1 −

1
x+3 dx=

1
2

⎡
⎢
⎣

⎤
⎥
⎦

ln 







x+1 − ln 







x+3 +c
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STEP 3

Use the laws o f lo garithms to  simplify the expressio n and/o r apply the limits

(Simplifying �rst may make applying the limits easier)

e.g. I=
1
2 ln

















x+1
x+3 +c

By rewriting the co nstant o f integratio n as a lo garithm (c= ln k , say) it is po ssible to  write the

�nal answer as a single term

e.g. I=
1
2 ln

















x+1
x+3 + ln k= ln

















x+1
x+3 + ln k= ln

⎛
⎜
⎜
⎜

⎝

⎞
⎟
⎟
⎟

⎠
k

















x+1
x+3

Exam T ip

Always check to  see if the numerato r can be written as the derivative o f the deno minato r

If so  then it is reverse chain rule, no t partial fractio ns

Use the number o f marks a questio n is wo rth to  help judge ho w much wo rk sho uld be

invo lved
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Worked example

Find ∫ 3x+1
x2+3x−10

dx .
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5.9.4 Advanced Applications of Integration

Area Between Curve & y-axis

What  is m eant  by t he area bet ween a curve and t he y-axis?

The area referred to  is the regio n bo unded by

the graph o f y= f (x)

the y -axis

the ho riz o ntal line y=a
the ho riz o ntal line y=b

The exact area can be fo und by evaluating a de�nite integral

The graph o f y= f (x)  co uld be a straight line

using basic shape area fo rmulae may be easier than integratio n

e.g. area o f a trapez ium: A=
1
2 h ( )a+b

How do I �nd t he area bet ween a curve and t he y-axis?

Use the fo rmula

A=∫
a

b








x dx

This is given in the f o rmula bo o klet

The functio n is no rmally given in the fo rm y= f (x)

so  will need rearranging into  the fo rm x=g (y)
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a  and b  may no t be given directly as co uld invo lve the x -axis (y=0) and/o r a ro o t o f 

x=g (y)

use a GDC to  plo t the curve, sketch it and highlight the area to  help

STEP 1

Identify the limits a  and b
Sketch the graph o f y= f (x)  o r use a GDC to  do  so , especially if a  and b  are no t given

directly in the questio n

STEP 2

Rearrange y= f (x)  into  the fo rm x=g (y)

This is similar to  �nding the inverse functio n f −1 (x)

STEP 3

Evaluate the fo rmula to  evaluate the integral and �nd the area required

If using a GDC remember to  include the mo dulus ( | … | ) symbo ls aro und x

In trickier pro blems so me (o r all) o f the area may be ‘negative’

this will be any area that is left o f the y -axis (negative x -values)

|x | makes such areas ‘po sitive’

a GDC will apply ‘|x |’ auto matically as lo ng as the | … | are included

o therwise, to  apply ‘|x |’, split the integral into  po sitive and negative parts; write an integral

and evaluate each part separately and add the mo dulus o f each part to gether to  give the

to tal area

Exam T ip

Sketch and/o r use yo ur GDC to  help visualise what the pro blem lo o ks like

Worked example

Find the area enclo sed by the curve with equatio n y=2+ x+4 , the y -axis and the

ho riz o ntal lines with equatio ns y=3  and y=6.
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Volumes of Revolution Around x-axis

What  is a volum e of  revolut ion around t he x-axis?

A so lid  o f revo lutio n is fo rmed when an area bo unded by a functio n y= f (x)

(and o ther bo undary equatio ns) is ro tated 2π  radians (360°)  aro und the x -axis

The vo lume  o f revo lutio n is the vo lume o f this so lid

Be careful – the ’fro nt’ and ‘back’ o f this so lid are �at

they were created fro m straight (vertical) lines

3D sketches can be misleading

How do I solve problem s involving  t he volum e of  revolut ion around x-axis?

Use the fo rmula

V=π∫
a

b
y2 dx

This is given in the f o rmula bo o klet

y  is a functio n o f x
x=a  and x=b  are the equatio ns o f the (vertical) lines bo unding the area

If x=a  and x=b  are no t stated in a questio n, the bo undaries co uld invo lve the y -axis (

x=0) and/o r a ro o t o f y= f (x)

Use a GDC to  plo t the curve, sketch it and highlight the area to  help

Visualising the so lid created is helpful

Try sketching so me functio ns and their so lids o f revo lutio n to  help

STEP 1

Identify the limits a  and b
Sketching the graph o f y= f (x)  o r using a GDC to  do  so  is helpful, especially when a  and b
are no t given directly in the questio n

STEP 2

Square y

STEP 3

Use the fo rmula to  evaluate the integral and �nd the vo lume o f revo lutio n

An answer may be required in exact fo rm

Exam T ip

If the given functio n invo lves a square ro o t(s), pro blems can seem quite daunting

Ho wever, this is o ften deliberate, as the square ro o t will be squared when applying the

Vo lume o f Revo lutio n fo rmula, and sho uld leave the integrand as so mething mo re

manageable

Whether a diagram is given o r no t, using yo ur GDC to  plo t the curve, limits, etc (where

po ssible) can help yo u to  visualise and make pro gress with pro blems
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Worked example

Find the vo lume o f the so lid o f revo lutio n fo rmed by ro tating the regio n bo unded by the graph o f 

y= 3x2+2 , the co o rdinate axes and the line x=3  by 2π  radians aro und the x -axis.  Give

yo ur answer as an exact multiple o f π .
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Volumes of Revolution Around y-axis

What  is a volum e of  revolut ion around t he y-axis?

Very similar to  abo ve, this is a so lid  o f revo lutio n which is fo rmed when an area bo unded by a

functio n y= f (x)  (and o ther bo undary equatio ns) is ro tated 2π  radians (360°)  aro und the y -

axis

The vo lume  o f revo lutio n is the vo lume o f this so lid

How do I solve problem s involving  t he volum e of  revolut ion around y-axis?

Use the fo rmula

V=π∫
a

b
x2 dy

This is given in the f o rmula bo o klet

The functio n is usually given in the fo rm y= f (x)

so  will need rearranging into  the fo rm x=g (y)

a  and b  may no t be given directly as co uld invo lve the x -axis (y=0) and/o r a ro o t o f x=g (y)

Use a GDC to  plo t the curve, sketch it and highlight the area to  help

Visualising the so lid created is helpful

STEP 1

Identify the limits a  and b
Sketching the graph o f y= f (x)  o r using a GDC to  do  so  is helpful, especially if a  and b  are

no t given directly in the questio n

STEP 2

Rearrange y= f (x)  into  the fo rm x=g (y)

This is similar to  �nding the inverse functio n f −1 (x)

STEP 3

Square x

STEP 4

Use the fo rmula to  evaluate the integral and �nd the vo lume o f revo lutio n

An answer may be required in exact fo rm

Exam T ip

If the given functio n invo lves a square ro o t, pro blems can seem quite daunting

This is o ften deliberate, as the square ro o t will be squared when applying the Vo lume o f

Revo lutio n fo rmula and the integrand will then beco me mo re manageable

Whether a diagram is given o r no t, using yo ur GDC to  plo t the curve, limits, etc (where

po ssible) can help yo u to  visualise the pro blem and make pro gress
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Worked example

Find the vo lume o f the so lid o f revo lutio n fo rmed by ro tating the regio n bo unded by the graph o f 

y=arcsin ( )2x+1  and the co o rdinate axes by 2π radians aro und the y -axis.  Give yo ur

answer to  three signi�cant �gures.
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5.9.5 Modelling with Volumes of Revolution

The vo lume o f the so lid o f revo lutio n fo rmed by ro tating an area thro ugh 2π radians aro und the x -

axis is V=π∫
a

b
y2 dx , and fo r the y -axis is V=π∫

a

b
x2 dy . These are bo th given in the f o rmula

bo o klet .

Adding & Subtracting Volumes

When would volum es of  revolut ion need t o be added or subt ract ed?

The ‘curve’ bo undary o f an area may co nsist o f mo re than o ne  functio n o f x
Fo r example

the ‘curve’ bo undary fro m x=0  to  x=3  is y= f (x)

the ‘curve’ bo undary fro m x=3  to  x=6  is y=g (x)

So  the to tal vo lume  wo uld be V=π∫
0

3
⎡
⎢
⎣

⎤
⎥
⎦

f (x)
2 dx+π∫

3

6
⎡
⎢
⎣

⎤
⎥
⎦

g (x)
2 dx

The so lid o f revo lutio n may have a ‘ho le’ in it

e.g. a ‘to ilet ro ll’ shape wo uld be the di�erence  o f two  cylindrical vo lumes

How do I know whet her t o add or subt ract  volum es of  revolut ion?

When the area to  be ro tated  aro und the x -axis has mo re than o ne functio n de�ning its bo undary

it can be trickier to  tell whether to  add  o r subtract vo lumes  o f revo lutio n

It will depend o n the nature  o f the f unctio ns  and their po ints  o f intersectio n

With help fro m a GDC, sketch the graph o f the functio ns and highlight the area required

How do I solve problem s involving  adding  or subt ract ing  volum es of  revolut ion?

Visualising the so lid created beco mes increasingly useful (but also  trickier) fo r shapes generated

by separate vo lumes o f revo lutio n

Co ntinue trying to  sketch the functio ns and their so lids o f revo lutio n to  help

ST EP 1

Identify the functio ns (y= f (x), y=g (x), . . .)  invo lved in generating the vo lume

Determine whether the separate vo lumes will need to  be added o r subtracted

Identify the limits fo r each vo lume invo lved

Sketching the graphs o f y= f (x)  and y=g (x) , o r using a GDC to  do  so , is helpful, especially

when the limits are no t given directly in the questio n

ST EP 2

Square y  fo r all functio ns (
⎡
⎢
⎣

⎤
⎥
⎦

f (x)
2, ⎡

⎢
⎣

⎤
⎥
⎦

g (x)
2, . . .)

This step is no t essential if a GDC can be used to  calculate integrals and an exact answer is no t

required.

ST EP 3

Use the appro priate vo lume o f revo lutio n fo rmula fo r each part, evaluate the de�nite integral

and add o r subtract as necessary

The answer may be required in exact fo rm
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Exam T ip

A sketch o f the graph, limits, etc is always helpful, whether o ne has been given in the questio n

o r no t

Use yo ur GDC where po ssible

Worked example

Find the vo lume o f revo lutio n o f the so lid fo rmed by ro tating the regio n enclo sed by the po sitive

co o rdinate axes and the graphs o f y=2x  and y=4−2x  by 2π radians aro und the x -axis. 

Give yo ur answer to  three signi�cant �gures.
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Modelling with Volumes of Revolution

What  is m eant  by m odelling  volum es of  revolut ion?

Many everyday o bjects such as buckets, beakers, vases and lamp shades can be mo delled as a

so lid o f revo lutio n

The vo lume o f revo lutio n o f the so lid can then be calculated

An o bject that wo uld usually stand upright  can be mo delled ho riz o ntally  so  its vo lume o f

revo lutio n can be fo und

What  m odelling  assum pt ions are t here wit h volum es of  revolut ion?

The so lids fo rmed are usually the main shape o f the bo dy o f the o bject

Fo r example, the handle o n a bucket wo uld no t be included

The thickness o f the so lid is negligible relative to  the siz e o f the o bject

thickness will depend o n the purpo se o f the o bject and the material it is made fro m

How do I solve m odelling  problem s wit h volum es of  revolut ion?

Visualising and sketching the so lid fo rmed can help with starting pro blems

Familiarity with applying the vo lume o f revo lutio n fo mulae

aro und the x-axis: V=∫
a

b
y2 dx

aro und the y-axis: V=∫
a

b
x2 dy

The vo lume o f revo lutio n may invo lve adding o r subtracting partial vo lumes

Questio ns may ask related questio ns in co ntext

g. A questio n abo ut a bucket may ask abo ut its capacity

this wo uld be measured in litres

so  a co nversio n o f units may be required

(100 cm  = 1 litre)3

Exam T ip

Remember to  answer questio ns directly

In mo delling scenario s, interpretatio n is o ften needed after �nding the '�nal answer'

Mo delling questio ns o ften ask abo ut assumptio ns, criticisms and/o r impro vements

Examples

it is assumed the thickness o f the material an o bject is made fro m is negligible

a 'smo o th' curve may no t be a go o d mo del if the item is being made fro m a ro ugh

material 

o ther things may signi�cantly reduce the vo lume fo und and impact co nclusio ns

e.g.  Sto nes, plants and deco ratio ns placed in an aquarium will reduce the vo lume o f

water needed to  �ll it - and hence the number/siz e/type o f �sh it can acco mmo date

may be impacted  
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Worked example

The diagram belo w sho ws the regio n R, which is bo unded by the functio n y= x−1 , the lines 

x=2  and x=10, and the x -axis.

Dimensio ns are in centimetres.

A mathematical mo del fo r a miniature vase is pro duced by ro tating the regio n R thro ugh 2π
radians aro und the x-axis.

Find the vo lume o f the miniature vase, giving yo ur answer in litres to  three signi�cant �gures.
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