Boost your performance and confidence with these topic-based exam questions

Practice questions created by actual examiners and assessment experts

Detailed mark scheme
Suitable for all boards
Designed to test your ability and thoroughly prepare you

### 5.7 Basic Limits \& Continuity



AA HL

### 5.7.1 Basic Limits \& Continuity

## Limits

## What are limits in mathematics?

- When we consider a limit in mathematics we look at the tendencyof a mathematical process as it approaches, but never quite reaches, an 'end point' of some sort
- We use a special limit notation to indicate this
- For example $\lim f(x)$ denotes 'the limit of the function $f(x)$ as xgoes to (or appro aches) 3' $x \rightarrow 3$
- I.e., what value (if any) $f(x)$ gets closer and closerto as $x$ takes on values closer and closer to 3
- We are not concerned here with what value (if any) $f(x)$ takes when $x$ is equal to 3 - only with the behaviour of $f(x)$ as $x$ gets close to 3
- The sum of an infinite geo metric sequence is a type of limit
- When you calculate $S_{\infty}$ for an infinite geometric sequence, what you are actually find ing is


## $\lim _{n \rightarrow \infty} S_{n}$

- I.e., what value (if any) the sum of the first $n$ terms of the sequence gets closer and closer to as the number of terms ( $n$ ) goes to infinity
- The sum neveractuallyreaches $S_{\infty}$, but as more and more terms are included in the sum it gets closer and closerto that value
- In this section of the IB course we will be considering the limits of functions
- This mayinclude finding the limit at a point where the function is undefined
- For example, $f(x)=\frac{\sin x}{x}$ is undefined when $x=0$, but we might want to know how the function behaves as $x$ gets closer and closerto zero
- Orit may include finding the limit of a function $f(x)$ as $x$ gets infinitely big in the po sitive or negative direction
- For this type of limit we write $\lim f(x)$ or $\lim f(x)$ (the first one can also be written $x \rightarrow \infty \quad x \rightarrow-\infty$
as $\lim f(x)$ to distinguish it from the second one) $x \rightarrow+\infty$
- These sorts of limits are often used to find the asymptotes of the graph of a function


## Howdo Ifind a simple limit?

- STEP 1: To find $\lim f(x)$ begin by substituting a into the function $f(x)$

$$
x \rightarrow a
$$

Page 1 of 11

- If $f(a)$ exists with a well-defined value, then that is also the value of the limit
- For example, for $f(x)=\frac{X-1}{X}$ we may find the limit as $x$ approaches 3 like this:

$$
\lim _{x \rightarrow 3} f(x)=\lim _{x \rightarrow 3} \frac{x-1}{x}=\frac{3-1}{3}=\frac{2}{3}
$$

- In this case, is simply equal to $f(3)$
- STEP 2: If $f(a)$ does not exist, it may be possible to use algebra to simplify $f(x)$ so that substituting a into the simplified function gives a well-defined value
- In that case, the well-defined value at $x=a$ of the simplified version of the function is also the value of the limit of the function as $x$ goes to $a$
- For example, $f(x)=\frac{X^{2}}{x}$ is not defined at $x=0$, but we mayuse algebra to find the limit as $x$ approaches zero:

$$
\lim _{x \rightarrow 0} f(x)=\lim _{x \rightarrow 0} \frac{x^{2}}{x}=\lim _{x \rightarrow 0} \frac{x}{1}\left(\text { cancelling the } x^{\prime} s\right)=\frac{0}{1}=0
$$

- Note that $f(x)=\frac{X^{2}}{X}$ and $g(x)=X$ are not the same function!
- They are equal for all values of $x$ exceptzero
- But for $x=0, g(0)=0$ while $f(0)$ is und efined
- However $f(x)$ gets closer and closerto zero as $x$ gets closer and closertozero
- If neither of these steps gives a well-defined value for the limit you may need to considermore advanced techniques to evaluate the limit
- Forexample l'Hôpital's Rule or using Maclaurinseries


## How do Ifind a limit to infinity?

- As $x$ goes to $+\infty$ or $-\infty$, a typical function $f(x)$ may converge to a well-defined value, or it may diverge to $+\infty$ or $-\infty$
- Otherbehaviours are possible - for example $\lim \sin x$ is simply und efined, because $\sin x$

$$
x \rightarrow \infty
$$

continues to oscillate between 1 and -1 as $x$ gets larger and larger

- There are two keyresults to be used here:
- $\lim _{x \rightarrow \pm \infty} \frac{k}{X^{n}}$ converges to 0 for rall $n>0$ and all $k \in \mathbb{R}$
- $\lim x^{n}$ diverges to $+\infty$ for all $n>0$
$x \rightarrow+\infty$

Page 2 of 11
For more help visit our website www.exampaperspractice.co.uk

- $\lim x^{n}$ for $n>0$ will need to be considered onacase-by-case basis, because of the $x \rightarrow-\infty$
differing behaviour of $x^{n}$ for different values of $n$ when $x$ is negative
- STEP 1:If necessary, use algebra to rearrange the function into a form where one or the other of the keyresults above may be applied
- STEP 2: Use the keyresults above to evaluate your limit
- Forexample:

$$
\lim _{x \rightarrow \infty} \frac{3 x^{2}-2 x+1}{4 x^{2}-x+2}=\lim _{x \rightarrow \infty} \frac{3-\frac{2}{x}+\frac{1}{x^{2}}}{4-\frac{1}{x}+\frac{2}{x^{2}}}=\frac{3-0+0}{4-0+0}=\frac{3}{4}
$$

- Or:

$$
\lim _{x \rightarrow+\infty} \frac{x^{2}+5 x-2}{32 x+3}=\lim _{x \rightarrow+\infty} \frac{x+5-\frac{2}{x}}{32+\frac{3}{x}}=\frac{(+\infty)+5-0}{32+0}=+\infty
$$

- I.e., the limit diverges to $+\infty$ (because $\frac{x^{2}+5 x-2}{32 x+3}$ it gets bigger and bigger without limit as $x$ gets bigger and bigger)
- Remember that neither $\frac{0}{0}$ nor $\frac{ \pm \infty}{ \pm \infty}$ has a well-defined value!
- If you attempt to evaluate a limit and get one of the two forms, you will need to try ano ther strategy
- This mayjust mean different or additional algebraic rearrangement
- But it may also mean that you need to consider using l'Hôpital's Rule or Maclaurinseries to evaluate the limit
-It is also worthremembering that if $\lim _{x \rightarrow \infty} f(x)=\infty$, then $\lim _{x \rightarrow \infty} \frac{k}{f(x)}=0$ foranynon-zero
$k \in \mathbb{R}$
- This can be us eful for example when evaluating the limits of functions containing exponentials
- $\lim _{x \rightarrow \infty} \mathrm{e}^{p x}=\infty$ for any $p>0$, so we immediately have $\lim _{x \rightarrow \infty} \mathrm{e}^{-p x}=\lim _{x \rightarrow \infty} \frac{1}{\mathrm{e}^{p x}}=0$ for $p>$ 0
- See the worked example below for a more involved versio n of this


## Do limits ever have'directions'?

- Yes theydo!
- The notation $\lim f(x)$ means 'the limit of $f(x)$ as $x$ ap pro aches a from abo ve'

$$
x \rightarrow a^{+}
$$

- I.e., this is the limit as xcomes 'down' to wards a, only considering the function's behaviourfor values of $x$ that are greater than $a$
- The notation $\lim _{x \rightarrow a^{-}} f(x)$ means 'the limit of $f(x)$ as $x$ approaches afrom below'
- I.e., this is the limit as $x$ comes 'up' to wards $a$, only considering the function's behaviourfor values of $x$ that are less than $a$
- One place these sorts of limits appear is for functions defined piecewise
- In this case the limits 'from above' and 'from below' maywell be different forvalues of $x$ at which the different 'pieces' of the function are jo ined
- But als o be aware of a situation like the following, where the limits from above and below may also be different:
- $\lim _{x \rightarrow 0^{+}} \frac{1}{x}=+\infty$ (because $\frac{1}{X}>0$ for $x>0$, with $\frac{1}{X}$ becoming bigger and bigger in the positive direction as $x$ gets closer and closerto zero 'fromabove')
- $\lim _{x \rightarrow 0^{-}} \frac{1}{x}=+\infty$ (because $\frac{1}{x}<0$ for $x<0$, with $\frac{1}{X}$ becoming bigger and bigger in the negative direction as $x$ gets closer and closerto zero 'from below')
- The graph of $y=\frac{1}{x}$ shows this limiting behaviour as $x$ approaches zero from the two different directions


## Worked example

a) Consider the function

$$
f(x)=\frac{3-4 x-5 x^{4}}{2 x^{4}+x^{3}+7}
$$

find $\lim f(x)$.
$x \rightarrow \infty$

$$
\frac{3-4 x-5 x^{4}}{2 x^{4}+x^{3}+7} \cdot \frac{1 / x^{4}}{1 / x^{4}}=\frac{\frac{3}{x^{4}}-\frac{4}{x^{3}}-5}{2+\frac{1}{x}+\frac{7}{x^{4}}}
$$

$$
\begin{aligned}
\lim _{x \rightarrow \infty} \frac{3-4 x-5 x^{4}}{2 x^{4}+x^{3}+7} & =\lim _{x \rightarrow \infty} \frac{\frac{3}{x^{4}}-\frac{4}{x^{3}}-5}{2+\frac{1}{x}+\frac{7}{x^{4}}} \\
& =\frac{0-0-5}{2+0+0}=-\frac{5}{2}
\end{aligned}
$$


find (i) $\lim g(x)$, and (ii) $\lim g(x)$.

$$
x \rightarrow 5^{-} \quad x \rightarrow 5^{+}
$$

Exam Papers Practice
(i) For $\lim _{x \rightarrow 5^{-}}$, we only consider $x<5$

$$
\lim _{x \rightarrow 5^{-}} g(x)=\lim _{x \rightarrow 5} \frac{1-5 x}{x^{2}}
$$

$$
=\frac{1-5(5)}{(5)^{2}}=-\frac{24}{25}
$$

(ii) For $\lim _{x \rightarrow 5^{+}}$, we only consider $x>5$
c) Consider the function

$$
\begin{aligned}
\lim _{x \rightarrow 5^{+}} g(x) & =\lim _{x \rightarrow 5}\left(x^{2}-4 x-6\right) \\
& =(5)^{2}-4(5)-6=-1
\end{aligned} ~\left\{\begin{array}{l}
h(x)=\frac{2 \mathrm{e}^{3 x}-3}{4-5 \mathrm{e}^{3 x}}
\end{array}\right.
$$

find $\lim h(x)$.

$$
\begin{aligned}
& \qquad \frac{2 e^{3 x}-3}{4-5 e^{3 x}} \cdot \frac{1 / e^{3 x}}{1 / e^{3 x}}=\frac{2-\frac{3}{e^{3 x}}}{\frac{4}{e^{3 x}}-5} \\
& \qquad \begin{aligned}
\lim _{x \rightarrow \infty} \frac{2 e^{3 x}-3}{4-5 e^{3 x}} & =\lim _{x \rightarrow \infty} \frac{2-\frac{3}{e^{3 x}}}{\frac{4}{e^{3 x}}-5} \\
\qquad & =\frac{2-0}{0-5}=
\end{aligned}
\end{aligned}
$$

## Continuity \& Differentiability

## What does it mean for a function to be continuous at a point?

- If a function is continuous at a point then the graph of the functiondoes not have any 'holes' or any sudden 'leaps' or 'jumps' at that point
- One way to think about this is to imagine sketching the graph
- So long as you can sketch the graph without lifting your pencil from the paper, then the function is continuous at all the points that yoursketch goes through
- But if you would have to lift your pencil off the paper at some point and continue drawing the graph from ano therpoint, then the function is not continuous at anysuch points where the function 'jumps'


Exam Papers Practice
© 2024 Exam Papers Practice

## CONTINUOUS AT ALL POINTS



- There are two main ways a function can fail to be continuous at a point:
- If the function is not defined for a particular value of $x$ then it is not continuous at that value of $x$
- For example, $f(x)=\frac{1}{X}$ is not continuous at $x=0$
- If the function is defined fora particular value of $x$, but then the value of the function 'jumps' as $x$ moves away from that $x$ value in the positive or negative direction, then the function is not continuous at that value of $x$
- This type of discontinuity can occur in a piecewise function, for example, where the different pieces of the function's graph don't 'jo in up'
- Youcanuse limits to show that a function is continuous at a point
- Let $f(x)$ be a function defined at $x=a$, such that $f(a)=b$
- If $\lim f(x)=b$ and $\lim f(x)=b$, then $f(x)$ is continuous at $x=a$

$$
x \rightarrow a^{-} \quad x \rightarrow a+
$$

- If either of those limits is not equal to $b$, then $f(x)$ is not continuous at $x=a$
- This is a slightly more formal way of expressing the 'you don't have to lift your pencil from the paper'idea!


## What does it mean for a function to be differentiable at a point?

- We say that a function $f(x)$ is differentiable at a point with $x$-coordinate $x_{0}$, if the derivative $f^{\prime}(x)$ exists and has a well-defined value $f^{\prime}\left(x_{0}\right)$ at that point
- To be differentiable at a point a function has to be continuous at that point
- So if a function is not continuous at a point, then it is also not differentiable at that point
- But continuity byits elf does not guarantee differentiability
- This means that differentiability is a stronger condition than continuity
- If a function is differentiable at a point, then the function is also continuous at that point
- But a function may be continuous at a point without being differentiable at that point
- This means there are functions that are continuous everywhere but are not differentiable everywhere
- In addition to being continuous a point, differentiability also requires that the function be smooth at that point
- 'Smooth' means that the graph of the function does not have any 'corners' or sudden changes of direction at the point
- An obvious example of a function that is not smooth at certain points is a mo dulus function $|f(x)|$ at any values of $x$ where $f(x)$ changes sign from po sitive to negative
- At any such point a modulus function will not be differentiable

Page 9 of 11


## - Exam Tip

- On the exam you will not usually be asked to test a function for continuity at a point
- Youshould however be familiar with the basic ideas about continuity outlined above
- On the exam you will not be asked to test a function for differentiability at a point
- You should however be familiar with the basic ideas about differentiability and its relationship with continuity as outlined above

Exam Papers Practice

## Worked example

Consider the function $f$ defined by

$$
f(x)=\left\{\begin{array}{cc}
x^{2}-2 x-1, & x<3 \\
2, & x=3 \\
\frac{x+2}{2}, & x>3
\end{array}\right.
$$

a) use limits to show that $f$ is not continuous at $X=3$.

$$
\begin{aligned}
& f(3)=2 \\
& \lim _{x \rightarrow 3^{-}} f(x)=\lim _{x \rightarrow 3}\left(x^{2}-2 x-1\right)=(3)^{2}-2(3)-1=2 \\
& \lim _{x \rightarrow 3^{+}} f(x)=\lim _{x \rightarrow 3}\left(\frac{x+2}{2}\right)=\frac{3+2}{2}=\frac{5}{2} \\
& T_{\text {The limit }} \text { from above } \\
& \lim _{x \rightarrow 3^{+}} f(x) \neq f(3) \text {, therefore } f \text { is not } \\
& \text { continuous at } x=3 .
\end{aligned}
$$

Copyright
© 2024 Exam Papers Practice
b) Hence explain why $f$ cannot be differentiable at $X=3$.

> In order to be differentiable at a point, a function must be continuous at that point.
> $f$ is not continuous at $x=3$, therefore
> it cannot be differentiable at $x=3$.

