Exam Papers Practice

5.6 Kinematics

Question Paper

To be used by all students preparing for DP IB Maths AA SL Students of other boards may also find this useful

Question la

A skydiver jumps from a moving aircraft at a point directly above a fixed point, O, on the ground. The trajectory of the skydiver is then modelled by the function

$$
h(x)=3200-0.5 x^{2}
$$

where $h \mathrm{~m}$ is the height of the skydiver above the ground and $x \mathrm{~m}$ is the horizontal distance along the ground from point O .
(i)

Explain the significance of the value 3200 in the model.
(ii)

Calculate the horizontal distance the skydiver covered upon landing.

Question 1b

Sketch a graph of h against X.

Exam Papers Practice

Question 1c

Explain why the model is not suitable forvalues of x larger than 80 mm .

Question 2a

A particle moves along a horizontal line starting at the point O. The displacement-time graph for the first 20 seconds of its motion is shown below. Displacement is measured in metres.

(i)

Write down the displacement of the particle after 2 seconds.
(ii)

Write down the displacement of the particle after 4 seconds.

Question 2b

Find the velocity of the particle between 13 and 20 seconds.
[1 mark]

Question 2c

Find the speed of the particle between 7 and 10 seconds.

Question 2d

Find the total distance travelled by the particle after 20 seconds.

Question 3a

A cricket ball is projected directly upwards from ground level. The motion of the cricket ball is modelled by the function

$$
h(t)=13 t-4.9 t^{2} \quad t>0
$$

where h metres is the height of the cricket ball above ground level after t seconds.
Find the times at which the cricket ball is exactly 3 m above the ground.
[2 marks]

Question 3b

For how long is the cricket ball at least 3 m above the ground?

Question 3c

A player catches the cricket ball (on its way down) at a height of 0.8 m above the ground.
Find the length of time the ball was in the air.
[2 marks]

Question 3d

Find the total distance travelled by the ball.

Question 3 e

Find the velocity of the cricket ball at $t=1$ second.

Question 4a

A soft ball is thrown upwards from the top of a 10 m tall building.
The height, $h \mathrm{~m}$ of the ball above the ground after t seconds is modelled by the function

$$
h(t)=H+7.8 t-4.9 t^{2} \quad t>0
$$

Write down the value of H.

Question 4b

Find the height of the ball after 2 seconds.

Question 4c

Find the time at which the ball is at the same height as it was when thrown.
[2 marks]

Question 4d

Find the time the ball first hits the ground.

Question 4e

Find $h^{\prime \prime}(t)$ and hence show that the acceleration at any time is $-9.8 \mathrm{~m} / \mathrm{s}^{2}$.

Exam
 Papers Practice

Question 5a

A particle moves along a straight line with a velocity, $v \mathrm{~ms}^{-1}$, given by $v=2^{t}-2$ where is t measured in seconds such that $0 \leq t \leq 4$.

Find the acceleration of the particle at time $t=2$.
[2 marks]

Question 5b

State the time when the particle comes to rest.

Question 5c

Find the total distance travelled by the particle.

Question 6a

A particle is found to have an acceleration, $\mathrm{a} \mathrm{ms}^{-2}$, according to the function
Exam Pa:

Find an expression for the velocity, v, of the particle given that $v(1)=1$.

Question 6b

Find the velocity of the particle at $t=2$.
[2 marks]

Question 7a

A particle, moving in a straight line, is found to have a velocity $v=\sin t+\cos 2 t$ where v is measured in ms^{-1} and time t is measured in seconds such that $0 \leq t \leq 5$.

Find the time(s) when the particle is instantaneously at rest.

Question 7b

Find the time(s) when the particle changes direction.

Question 7c

Find the distance travelled in the first second of motion.

Exam Papers Practice

Question 7d

Find the acceleration of the particle at the instant it first changes direction.

Question 7e

Find the displacement of the particle from its starting point to the point when $t=5$.

