
5.6 Kinematics

Mark Schemes

Exam Papers Practice

To be used by all students preparing for DP IB Maths AA SL Students of other boards may also find this useful

Page 2

b) Velocity is the gradient of the displacement-time graph. $m = \frac{y_2 - y_1}{x_2 - x_1}$ (from formula booklet)

$$m = \frac{0 - (-10)}{20 - 13}$$

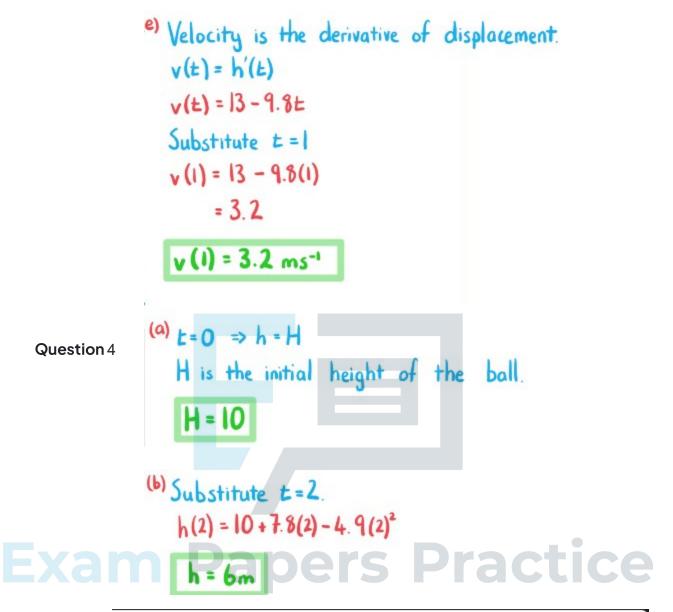
= $\frac{10}{7}$
Velocity = $\frac{10}{7}$ ms⁻¹

Exact Speed is the magnitude of velocity ctice $Velocity = \frac{0 - 10}{10 - 7}$ $= -\frac{10}{3}$ $\left| -\frac{10}{3} \right| = \frac{10}{3}$ Speed = $\frac{10}{3}$ ms⁻¹

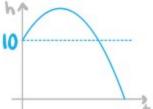
(d) Look at the distance for each section: 0-45 4-75 7-135 13-205 10m + 0m + 20m + 10mTotal distance = 40m a) Solve h=3 hA **Question** 3 $13t - 4.9t^2 = 3$ 3 $4.9t^{2} - 13t + 3 = 0$ t=0.2553... t=2.3977.... t=0.255s (3sf) t=2.40s (3sf) b) Subtract the times when its at 3m. Exaŗ Ce 3

= 2.142 ...

2.14 seconds


2.40

0.255



*) Solve
$$h = 0.8$$

 $|3t - 4.9t^* = 0.8$
 $4.9t^* - |3t + 0.8 = 0$
 $t = 0.0630... t = 2.5900...$
Reject as this is
on the way up
2.59 seconds
(d) Method 1 - Find the maximum height
Draw the graph on
the calculator and
find the coordinates
of the maximum.
Distance up + Distance down
8.622... + (8.622...=0.8) **ractice**
 $= 16.444...$
16.4m
Method 2 - Calculus
Distance = $\int_{t_0}^{t_0} |v(t)| dt$ (from formula booklet)
 $v(t) = h'(t)$
 $v(t) = 13 - 9.8t$
 $\int_{13}^{13} - 9.8t | dt = 16.444...$

*) Solve h(t) = 10 $10 + 7.8t - 4.9t^{2} = 10$ $4.9t^{2} - 7.8t = 0$ t = 0 $t = \frac{78}{49} = 1.5918...$ Reject as this was when thrown t = 1.59s (3sf)

For more help visit our website www.exampaperspractice.co.uk

d) Solve
$$h(t) = 0$$

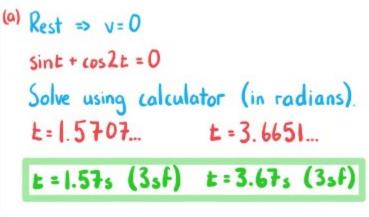
 $|0 + 7.8t - 4.9t^{*} = 0$
 $4.9t^{*} - 7.8t - 10 = 0$
 $t = -0.8394...$ $t = 2.4312...$
Reject as time
can't be negative
 $t = 2.43s$
e) Differentiate twice
 $h'(t) = 7.8 - 9.8t$
 $h''(t) = 7.8 - 9.8t$
 $h''(t) = -9.8$
Acceleration $a = \frac{d^{3}s}{dt^{*}}$ (from formula booklet)
 $a(t) = h''(t)$
Can $a(t) = -9.8$ for all to Practice

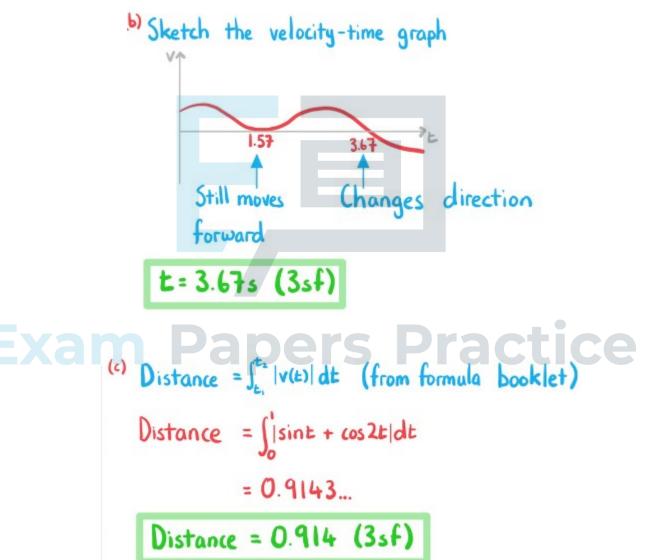
Question 5

^(a) $a = \frac{dv}{dt}$ (from formula booklet) Using the derivative function on the calculator: $a = \frac{d}{dt} (2^{t} - 2) \Big|_{t=2}$ = 2.7725... $a(2) = 2.77ms^{-2} (3sf)$

"<u>Method</u> I - Using formula booklet Distance = Jt |v(E) dt (from formula booklet) Distance = $\int_{-2}^{+} |2^{t} - 2| dt$ = 14.755. Distance = 14.8 m (3sf) Method 2 - Using a velocity-time graph Displacement = ft v(E)dE (from formula booklet) a0-1 (2*-2dt = -0.5573... tice 1-4s 52 -2dt = 14.1977 ... Distance is magnitude of displacement Total distance = |-0.5573... | + 14.1977 ... = 14.755 ... Distance = 14.8 m (3sf)

.


Question 6


(a)
$$a = \frac{dv}{dt}$$
 (from formula booklet)
 $v = \int a dt$
 $v = \int \frac{1}{t^{2}} + \sin t dt$
 $v = \int t^{-2} + \sin t dt$
 $v = -t^{-1} - \cos t + c$
 $v(1) = 1$
 $1 = -(1)^{-1} - \cos 1 + c$
 $c = 1 + 1 + \cos 1 + c$
 $c = 2.5403...$ radians.
 $v = -\frac{1}{t} - \cos t + 2.54$

b) Substitute
$$t=2$$
.
Exav(2) = $-\frac{1}{2}$ = cos2 + 2.54... IS Practice
= 2.456... Make sure calculator is in
radians.
 $v(2)=2.46ms^{-1}(3sf)$

(d)
$$a = \frac{dv}{dt}$$
 (from formula booklet)
Method 1 - Using calculator
 $a = \frac{d}{dt}(sint + cos2t)|_{t=3.665...}$
 $= -2.59777...$
 $a = -2.60 \text{ ms}^{-2}$ (3sf)
Method 2 - By hand
 $a(t) = cost - 2sin2t$
 $a(3.665...) = -2.59777...$

Exam Papers Practice

(e) Displacement =
$$\int_{t_1}^{t_2} v(t) dt$$
 (from formula booklet)
Displacement = $\int_{0}^{s} sint + cos2t dt$
Method 1 - Using calculator
 $\int_{0}^{s} sint + cos2t dt = 0.4443...$

Displacement = 0.444m (3sf)

$$\frac{\text{Method 2} - By \text{ hand}}{\int_{0}^{5} \sin t + \cos 2t \, dt} = \left[-\cos t + \frac{1}{2} \sin 2t \right]_{0}^{5}$$

= $(-\cos 5 + \frac{1}{2} \sin 10) - (-\cos 0 + \frac{1}{2} \sin 0)$
= $-0.5556...$ - (-1)
= $0.4443...$
Displacement = $0.444m$ (3sf)