

DP IB Maths: AA HL

5.5 Optimisation

Contents

* 5.5.1 Modelling with Differentiation

5.5.1 Modelling with Differentiation

Modelling with Differentiation

What can be modelled with differentiation?

- Recall that differentiation is about the rate of change of a function and provides a way of finding minimum and maximum values of a function
- Anything that involves maximising or minimising a quantity can be modelled using differentiation; for example
 - minimising the cost of raw materials in manufacturing a product
 - the maximum height a football could reach when kicked
- These are called **optimisation** problems

What modelling assumptions are used in optimisation problems?

- The quantity being optimised needs to be dependent on a single variable
 - If other variables are initially involved, constraints or assumptions about them will need to be made; for example
 - minimising the cost of the **main** raw material timber in manufacturing furniture say
 - the cost of screws, glue, varnish, etc can be fixed or considered **negligible**
- Other modelling assumptions may have to be made too; for example
 - ignoring air resistance and wind when modelling the path of a kicked football

How do I solve optimisation problems?

- In optimisation problems, letters other than x, y and f are often used including capital letters
 - V is often used for volume, S for surface area
 - r for radius if a circle, cylinder or sphere is involved
- Derivatives can still be found but be clear about which letter is representing the independent (x) variable and which letter is representing the dependent (y) variable
 - A GDC may always use x and y but ensure you use the correct letters throughout your working and final answer
- Problems often start by linking two connected quantities together for example volume and surface area
 - Where more than one variable is involved, **constraints** will be given such that the quantity of interest can be rewritten in terms of **one** variable
- Once the quantity of interest is written as a function of a single variable, differentiation can be used to maximise or minimise the quantity as required

STEP 1

Rewrite the quantity to be optimised in terms of a single variable, using any constraints given in the question

STEP 2

Differentiate and solve the derivative equal to zero to find the "x"-coordinate(s) of any stationary points

STEP 3

If there is more than one stationary point, or the requirement to justify the nature of the stationary point, differentiate again

STEP 4

Use the second derivative to determine the nature of each stationary point and select the maximum or minimum point as necessary

STEP 5

Interpret the answer in the context of the question

A large allotment bed is being designed as a rectangle with a semicircle on each end, as shown in the diagram below.

The total area of the bed is to be $100\pi~m^2$.

a) Show that the perimeter of the bed is given by the formula

$$P = \pi \left(r + \frac{100}{r} \right)$$

The width of the rectangle is 2rm and its length Lm STEP 1: The AREA of the bed, 1001T m2 is given by semi-circle rectangle semi-circle (constraint) $: \pi r^{2} + 2rL = 100\pi$ 2rL= 1001-TT-2 Write L in terms of r $L = \frac{50\pi}{5} - \frac{\pi}{2}r$ The PERIMETER of the bed is P= TF+TF+2L 1 1 two straight lengths Semi-circular arcs Use L from the area constraint to write P interms of ronly $P = 2\pi r + 2\left(\frac{50\pi}{r} - \frac{\pi}{2}r\right)$ $P = \pi r + \frac{100\pi}{r}$ $\therefore P = \pi \left(r + \frac{100}{r} \right)$

b) Find $\frac{\mathrm{d}P}{\mathrm{d}r}$.

STEP I: Rewrite P of powers of r $P = \pi (r + 100r^{-1})$ STEP 2: $\frac{dP}{dr} = \pi (1 - 100r^{-2})$ $\therefore \frac{dP}{dr} = \pi (1 - \frac{100}{r^{2}})$

c) Find the value of *I* that minimises the perimeter.

STEP 2: $\pi \left(1 - \frac{100}{r^2} \right) = 0$ $r^2 - 100 = 0$ r = 10 (reject - 10 as r is a length) This is the only stationary point so we can assume it is minimal.

* r= 10 m minimises the perimeter

d) Hence find the minimum perimeter.

