

Boost your performance and confidence with these topic-based exam questions

Practice questions created by actual examiners and assessment experts

Detailed mark scheme

Suitable for all boards

Designed to test your ability and thoroughly prepare you

5.5 Optimisation

IB Maths - Revision Notes

AA SL

5.5.1 Modelling with Differentiation

Modelling with Differentiation

What can be modelled with differentiation?

- Recall that differentiation is about the rate of change of a function and provides a way of finding minimum and maximum values of a function
- Anything that involves **maximising** or **minimising** a quantity can be modelled using differentiation; for example
 - minimising the cost of raw materials in manufacturing a product
 - the maximum height a football could reach when kicked
- These are called **optimis**ation problems

What modelling assumptions are used in optimisation problems?

- The quantity being optimised needs to be dependent on a single variable
 - If other variables are initially involved, constraints or assumptions about them will need to be made; for example
 - minimising the cost of the **main** raw material timber in manufacturing furniture say
 - the cost of screws, glue, varnish, etc can be fixed or considered negligible
- Other modelling assumptions may have to be made too; for example
 - ignoring air resistance and wind when modelling the path of a kicked football

How do I solve optimisation problems?

- In optimisation problems, letters other than x, y and f are often used including capital letters
 - **V**is often used for volume, **S**for surface area
 - rforradius if a circle, cylinder or sphere is involved

Copy Derivatives can still be found but be clear about which letter is representing the independent (x) $^{\circ}$ 2024 variable and which letter is representing the dependent (y) variable

- A GDC may always use x and y but ensure you use the correct letters throughout your working and final answer
- Problems often start by linking two connected quantities together for example volume and surface area
 - Where more than one variable is involved, **constraints** will be given such that the quantity of interest can be rewritten in terms of **one** variable
- Once the quantity of interest is written as a function of a single variable, **differentiation** can be used to **maximise** or **minimise** the quantity as required

STEP 1

Rewrite the quantity to be optimised in terms of a single variable, using any constraints given in the question

STEP 2

Differentiate and solve the derivative equal to zero to find the "x"-coordinate(s) of any stationary points

STEP 3

If there is more than one stationary point, or the requirement to justify the nature of the stationary point, differentiate again

STEP 4

Use the second derivative to determine the nature of each stationary point and select the maximum or minimum point as necessary

STEP 5

Interpret the answer in the context of the question

- The first part of rewriting a quantity as a single variable is often a "show that" question this means you may still be able to access later parts of the question even if you can't do this bit
- Even when an algebraic solution is required you can still use your GDC to check answers and help you get an idea of what you are aiming for

Worked example

A large allotment bed is being designed as a rectangle with a semicircle on each end, as shown in the diagram below.

The total area of the bed is to be $100\pi~m^2$.

a) Show that the perimeter of the bed is given by the formula

$$P = \pi \left(r + \frac{100}{r} \right)$$

STEP 1: The width of the rectangle is 2rm and its length Lm. The AREA of the bed, $100\pi m^2$ is given by

$$\frac{1}{2}\pi r^{2} + 2rL + \frac{1}{2}\pi r^{2} = 100\pi$$
f f f f fotal area
Semi-circle rectangle Semi-circle (constraint)

$$\therefore \pi r^{2} + 2rL = 100\pi$$

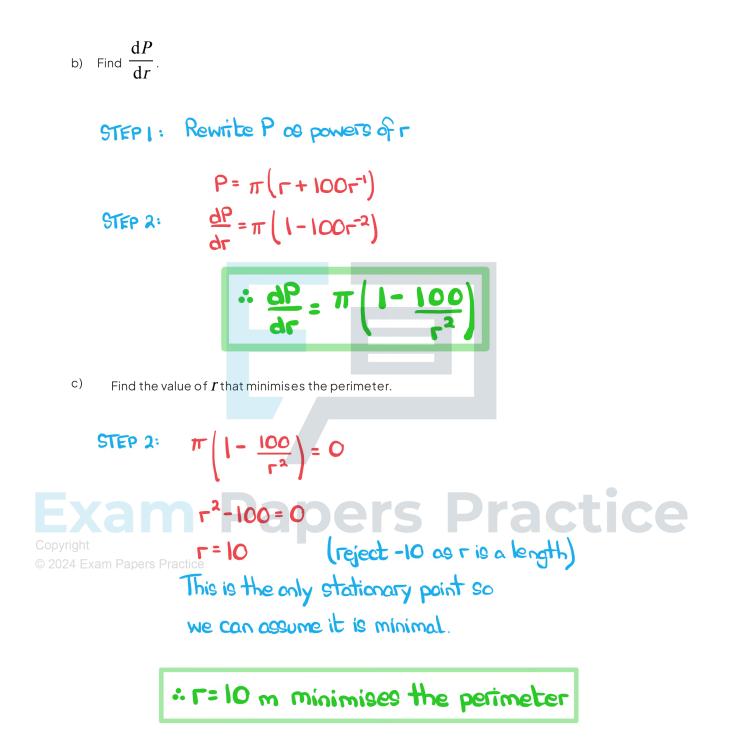
$$2rL = 100\pi - \pi r^{2}$$
Write L in terms of r
L = $\frac{50\pi}{r} - \frac{\pi}{2}r$
The PERIMETER of the bed is
P = $\pi r + \pi r + 2L$
f f two straight
Semi-circular area

Use L from the area constraint to write P in terms of ronly $P = 2\pi r + 2\left(\frac{50\pi}{r} - \frac{\pi}{2}r\right)$

© 2024 Exam Papers Practice

$$\therefore P = \pi \left(r + \frac{100}{r} \right)$$

 $\mathsf{P} = \pi \mathsf{r} + \underline{100\pi}$



d) Hence find the minimum perimeter.

STEP 5: Interpret answer in context

Minimum perimeter is when
$$r=10$$

 $\therefore P = \pi \left(10 + \frac{100}{10} \right) = 20\pi$
Minimum perimeter is 20π m
Use your GDC to check
e) Justify that this is the minimum perimeter.
STEP 4: Use second derivative
 $\frac{d^2P}{dr^2} = \pi \left(200r^{-3} \right)$
 $dr r = 10, \quad \frac{d^2P}{dr^2} = \frac{\pi}{5} > 0 \quad \therefore \text{ minimum}$
 $\frac{dr^2}{dr^2} = \frac{\pi}{5} > 0 \quad \therefore \text{ minimum}$
 $\frac{dr^2}{dr^2} = \frac{\pi}{5} > 0 \quad \therefore \text{ minimum}$