星

 EXAM PAPERS PRACTICE

 EXAM PAPERS PRACTICE}

Boost your performance and confidence with these topic-based exam questions

Practice questions created by actual examiners and assessment experts

Detailed mark scheme
Suitable for all boards
Designed to test your ability and thoroughly prepare you

5.5 Kinematics

5.5.1 Kinematics Toolkit

Displacement, Velocity \& Acceleration

What is kinematics?

- Kinematics is the branch of mathematics that models and analyses the motion of objects
- Commonwords such as distance, speed and acceleration are used in kinematics but are used according to their technical definition

What definitions dolneed to be a ware of?

- Firstly, only motion of an object in a straight line is considered
- this could be a horizont al straight line
- the positive direction would be to the right
- orthis could be a vertical straight line
- the positive direction would be upwards

Particle

- A particle is the general termfor anobject
- some questions mayuse a specific object such as a car oraball

Time t seconds

- Displacement, velocity and acceleration are all functions of time t
- Initially time is zero $t=0$

Displacement $S \mathrm{~m}$

- The displacement of a particle is its distance relative to a fixed point
- the fixed point is often (but not always) the particle's init ial po sition

2- Displacement will be zero $S=0$ if the object is at orhas returned to its initial position

- Displacement will be negative if its positionrelative to the fixed point is in the negative direction (left ordown)

Distance $d m$

- Use of the word distance needs to be considered carefully and could refer to
- the distance travelled by a particle
- the (straight line) distance the particle is from a particular point
- Be careful not to confuse displacement with distance
- if a bus route starts and ends at abus depot, when the bus has returned to the depot, its displacement will be zero but the distance the bus has travelled will be the length of the route
- Distance is always positive

Velocity Vms^{-1}

- The velocity of a particle is the rate of change of its displacement at time t
- Velocity will be negative if the particle is moving in the negative direction
- A velocity of zero means the particle is stationary $V=0$

Speed $|V| \mathrm{ms}^{-1}$

- Speed is the magnitude (a.k.a. absolute value ormodulus) of velocity
- as the particle is moving in a straight line, speed is the velocity ignoring the direction
- if $v=4,|v|=4$
- if $v=-6,|v|=6$

Acceleration ams^{-2}

- The acceleration of a particle is the rate of change of its velocity at time t
- Acceleration can be negative but this alone cannot fullydescribe the particle's motion
- if velocity and acceleration have the same sign the particle is accelerating (speeding up)
- if velocity and acceleration have different signs then the particle is decelerating (slowing down)
- if acceleration is zero $a=0$ the particle is moving with constant velocity
- in all cases the direction of motion is determined by the sign of velocity

Are there any other words or phrases in kinematicsl should know?

- Certain words and phrases can imply values or directions in kinematics
- a particle described as "at rest" means that its velocity is zero, $\boldsymbol{V}=\mathbf{0}$
- a particle described as moving "due east" or "right" orwould be moving in the positive horizontal direction
- this also means that $\boldsymbol{V}>\mathbf{0}$
- a particle "dropped from the top of a cliff" or "do wn" would be moving in the negative verticaldirection
- this also means that $\boldsymbol{V}<\mathbf{0}$

What are the key features of a velocity-time graph?

- The gradient of the graph equals the acceleration of an object
- A straight line shows that the object is accelerating at a constant rate
- A horizontal line shows that the object is moving at a constant velocity
- The area between graph and the x-axis tells us the change in displacement of the object
- Graph above the x-axis means the object is moving forwards
- Graph below the x-axis means the object is moving backwards
- The total displacement of the object fromits starting point is the sum of the areas above the xaxis minus the sum of the areas below the x-axis
- The tot al distance travelled by the object is the sum of all the areas
- If the graph touches the \mathbf{x}-axis then the object is stationary at that time
- If the graph is above the \mathbf{x}-axis then the object has positive velocityand is travelling forwards
- If the graph is below the \mathbf{x}-axis then the object has negative velo city and is travelling backwards

INITIAL VELOCITY
7 SPEEDING UP BUT MOVING BACKWARDS
2 CONSTANT ACCELERATION

8 SLOWING DOWN BUT STILL MOVING BACKWARDS
3 VARIABLE ACCELERATION

4
CONSTANT VELOCITY
9
DISTANCE TRAVELLED FORWARDS

10
DISTANCE TRAVELLED BACKWARDS
5
DECELERATING (SLOWING DOWN BUT STILL MOVING FORWARDS)

```
INSTANTANEOUSLY AT REST
(STATIONARY FOR AN
INSTANT)
```


- Exam Tip

- In an exam if you are given an expression for the velo city then sketching a velocity-time graph can help visualise the problem

Worked example

Exam Papers Practice

A particle is projected vertic ally upwards from ground level, taking 8 seconds to return to the ground.

The velocity-time graph below illustrates the motion of the particle for these 8 seconds.

i) How many seconds does the particle take to reach its maximum height? Give a reason for your answer.
ii) State, with a reason, whether the particle is accelerating or decelerating at time $t=3$.
i. At maximum height, velocity is zero
$v=0$ at $t=4$
\therefore The particle takes 4 seconds to reach its maximum height. This is because its velocity is $\mathrm{m} \mathrm{s}^{-1}$ at 4 seconds.
ii. At $t=3$, velocity is POSITIVE

Acceleration is the gradient of velocity
At $t=3$, acceleration is NEGATINE
\therefore At 3 seconds the particle is decelerating as its velocity and acceleration have different signs.

5.5.2 Calculus for Kinematics

Differentiation for Kinematics

How is differentiation used in kinematics?

- Displacement, velocity and acceleration are related by calculus
- In terms of differentiation and derivatives
- velocity is the rate of change of displacement
- $V=\frac{\mathrm{d} s}{\mathrm{~d} t}$ or $v(t)=s^{\prime}(t)$
- acceleration is the rate of change of velocity

$$
a=\frac{\mathrm{d} v}{\mathrm{~d} t} \text { or } a(t)=v^{\prime}(t)
$$

- so acceleration is also the second derivative of displacement
- $a=\frac{\mathrm{d}^{2} s}{\mathrm{~d} t^{2}}$ or $a(t)=s^{\prime \prime}(t)$
- Sometimes velocity may be a function of displacement ratherthan time
- $v(s)$ rather than $v(t)$
- in such circumstances, acceleration is $a=V \frac{\mathrm{~d} V}{\mathrm{~d} S}$
- this result is derived from the chain rule
- All acceleration fo rmulae are given in the formula booklet
- Even if a motion graph is given, if possible, use yo ur GDC to draw one
- you can then use your GDC's graphing features to find gradients
- velocity is the gradient on a displacement (-time) graph
- acceleration is the gradient on a velocity (-time) graph
- Dot notationis often used to indicate time derivatives
- \boldsymbol{X} is sometimes used as displacement (rather than \boldsymbol{S}) in such circumstances
- $\dot{X}=\frac{\mathrm{d} x}{\mathrm{~d} t}$, so \dot{X} is velocity
- " ${ }^{\prime \prime}=\frac{\mathrm{d}^{2} X}{\mathrm{~d} t^{2}}$, so ${ }^{\prime \prime}$ is acceleration

Worked example

a) The displacement, \boldsymbol{X} m, of a particle at \boldsymbol{t} seconds, is modelled by the function $x(t)=2 t^{3}-27 t^{2}+84 t$.

Find expressions for $\dot{\boldsymbol{X}}$ and \boldsymbol{X}.

$$
\begin{aligned}
& x=2 t^{3}-27 t^{2}+84 t \\
& \dot{x}=\frac{d x}{d t} \quad \therefore \quad \dot{x}=6 t^{2}-54 t+84 \\
& \quad \dot{x}=6\left(t^{2}-9 t+14\right) \\
& \dot{x}=6(t-2)(t-7) \quad \text { It is not essential to factorise answers } \\
& \ddot{x}=\frac{d^{2} x}{d t^{2}} \quad \therefore \quad \ddot{x}=12 t-54 \\
& \ddot{x}=6(2 t-9)
\end{aligned}
$$

b) The velocity, $V \mathrm{~ms}^{-1}$, of a particle is given as $V(s)=6 s-5 s^{2}-4$, where S is the dis placement of the particle.
Find an expression, in terms of \boldsymbol{S}, for the acceleration of the particle.

$$
\begin{aligned}
& v=6 s-5 s^{2}-4 \\
& a=\frac{v d v}{d s} \quad \therefore a=\left(6 s-5 s^{2}-4\right)(6-10 s) \\
& a=2(3-5 s)\left(6 s-5 s^{2}-4\right)
\end{aligned}
$$

Integration for Kinematics

How is integration used in kinematics?

- Since velocity is the derivative of displacement $\left(V=\frac{\mathrm{d} S}{\mathrm{~d} t}\right)$ it follows that

$$
s=\int v \mathrm{~d} t
$$

- Similarly, velocity will be an antiderivative of acceleration

$$
V=\int a d t
$$

- You might be given the acceleration in terms of the velocity and/or the displacement
- In this case you can solve a differential equation to find an expression for the velocity in terms of the displacement

$$
a=v \frac{\mathrm{~d} v}{\mathrm{~d} s}
$$

How would I find the constant of integration in kinematics problems?

- A boundary orinitial condition would need to be known
- phrases involving the word "initial", or "initially" are referring to time being zero, i.e. $t=0$
- you might also be given information about the object at some othertime (this is called a boundary condition)
- substituting the values in from the initial or boundary condition would allow the constant of integration to be found

How are definite integrals used in kinematics?

- Definite integrals can be used to find the displacement of a particle between two points in time
- $\int_{t_{1}}^{t_{2}} v(t) d t$ would give the displacement of the particle between the times $t=t_{1}$ and
$t=t_{2}$
- This can be found using a velocity-time graph by subtracting the total area below the horizontal axis from the total area abo
- $\int_{t_{1}}^{t_{2}}|v(t)| \mathrm{d} t$ gives the dist ance a particle has travelled between the times $t=t_{1}$ and $t=t_{2}$
- This can be found using a velo cityvelocity-time graph by ad ding the total area below the horiz ontal axis to the total area above
- Use a GDC to plot the modulus graph $y=|v(t)|$

(?) Exam Tip

- Sketching the velocity-time graph can help you visualise the distances travelled using areas between the graph and the horizontal axis

Worked example

A particle moving in a straight horizontal line has velocity ($V \mathrm{~m} \mathrm{~s}^{-2}$) at time t seconds modelled by $v(t)=8 t^{3}-12 t^{2}-2 t$.
i. Given that the initial position of the particle is at the origin, find an expression for its dis placement from the origin at time t seconds.
ii. Find the displacement of the particle from the origin in the first five seconds of its motion.
iii. Find the distance travelled by the particle in the first five seconds of its motion.

Use your GOC to sketch a velocity (-time) graph and use it to check to see if your answers are sensible.

i. "initial" $-t=0$, "origin" $-s=0$
$s(t)=\int v(t) d t=\int\left(8 t^{3}-12 t^{2}-2 t\right) d t$
$s(t)=2 t^{4}-4 t^{3}-t^{2}+c \quad$ where c is a constant at $t=0, s=0, \quad \therefore c=0$
$\therefore S(t)=2 t^{4}-4 t^{3}-t^{2}$
ii. "first five seconds" $-t_{1}=0, t_{2}=5$

Using a GDC this would be

$$
s=\int_{0}^{5}\left(8 t^{3}-12 t^{2}-2 t\right) d t
$$

$$
s=725 \mathrm{~m}
$$

iii. Using a GOC this would be

$$
\begin{aligned}
& d=\int_{0}^{5}\left|8 t^{3}-12 t^{2}-2 t\right| d t \quad d \text { for distance } \\
& d=736.734020 \ldots \\
& \therefore d=737 \mathrm{~m}(3 \text { sf. })
\end{aligned}
$$

