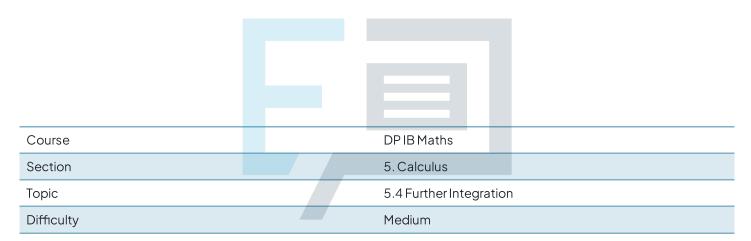


5.4 Further Integration Mark Schemes



Exam Papers Practice

To be used by all students preparing for DP IB Maths AA SL Students of other boards may also find this useful

Ssinx dx = - cos x + c } standard integral

Question 1

$$f(x) = e^{x} \implies f'(x) = e^{x}$$
 } Derivative of e^{x}

Example where
$$d = f(x)$$
 Practice

$$\Rightarrow \frac{dy}{dx} = \frac{dy}{dv} \times \frac{dv}{dx}$$
Chain rule

c) Let $y = e^{7x}$. Then $y = e^{v}$ and $u = 7x$, so
 $\frac{dy}{dx} = \frac{dy}{dv} \times \frac{dv}{dx} = (e^{v})(7) = 7e^{v} = 7e^{7x}$
And $\int \frac{dy}{dx} dx = y + c$ (indefinite integral), so :

$$\int 7e^{7x} dx = e^{7x} + c$$

For more help visit our website www.exampaperspractice.co.uk

n2
$$f(x) = \sin x \implies f'(x) = \cos x$$
 } Derivative of sinx
 $\gamma = g(u)$ where $u = f(x)$
 $\implies \frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$ } Chain rule

a) By the chain rule,
$$\frac{d}{dx}(\sin 2x) = 2\cos 2x$$

$$\int \cos 2x \, dx = \frac{1}{2} \int 2\cos 2x \, dx$$

$$\int \text{compensate}$$

=
$$\frac{1}{2}$$
 sin 2x + c (indefinite integral)
(as antiderivative)

Exam Papers Practice

$$\int x^{n} dx = \frac{x^{n+1}}{n+1} + c \quad integral of x^{n} (n \neq -1)$$

$$\int \text{Substitution} \\ \text{b) Let } u = 3x - 1, \text{ Then :} \\ \frac{du}{dx} = 3 \implies du = 3 dx \implies dx = \frac{1}{3} du \quad \text{Find du in} \\ \text{terms of } x \\ x = 2 \implies u = 3(2) - 1 = 5 \\ x = 0 \implies u = 3(0) - 1 = -1 \quad integration \text{ limits} \\ \int_{0}^{2} (3x - 1)^{3} dx = \int_{-1}^{5} u^{3} (\frac{1}{2} du) \\ = \frac{1}{3} \int_{-1}^{5} u^{3} du \\ = \frac{1}{3} \left[\frac{1}{4} u^{4} \right]_{-1}^{5} \\ = \frac{1}{3} \left[\frac{1}{4} (5)^{4} - \frac{1}{4} (-1)^{4} \right] \\ \text{Rem P} = \frac{1}{3} \left(\frac{1}{4} (5)^{4} - \frac{1}{4} (-1)^{4} \right) \\ \text{Rem P} = \frac{1}{3} \left(\frac{1}{4} (5)^{4} - \frac{1}{4} (-1)^{4} \right) \\ \text{Rem P} = \frac{1}{3} \left(\frac{1}{4} (5)^{4} - \frac{1}{4} (-1)^{4} \right) \\ \text{Rem P} = \frac{1}{3} \left(\frac{1}{4} (5)^{4} - \frac{1}{4} (-1)^{4} \right) \\ \text{Rem P} = \frac{1}{3} \left(\frac{1}{4} (5)^{4} - \frac{1}{4} (-1)^{4} \right) \\ \text{Rem P} = \frac{1}{3} \left(\frac{1}{4} (-1)^{4} \right) \\ \text{Rem P} = \frac{1}{3} \left(\frac{1}{4} (-1)^{4} - \frac{1}{4} (-1)^{4} \right) \\ \text{Rem P} = \frac{1}{3} \left(\frac{1}{4} (-1)^{4} - \frac{1}{4} (-1)^{4} \right) \\ \text{Rem P} = \frac{1}{3} \left(\frac{1}{4} (-1)^{4} - \frac{1}{4} (-1)^{4} \right) \\ \text{Rem P} = \frac{1}{3} \left(\frac{1}{4} (-1)^{4} - \frac{1}{4} (-1)^{4} \right) \\ \text{Rem P} = \frac{1}{3} \left(\frac{1}{4} (-1)^{4} - \frac{1}{4} (-1)^{4} \right) \\ \text{Rem P} = \frac{1}{3} \left(\frac{1}{4} (-1)^{4} - \frac{1}{4} (-1)^{4} \right) \\ \text{Rem P} = \frac{1}{3} \left(\frac{1}{4} (-1)^{4} - \frac{1}{4} (-1)^{4} \right) \\ \text{Rem P} = \frac{1}{3} \left(\frac{1}{4} (-1)^{4} - \frac{1}{4} (-1)^{4} \right) \\ \text{Rem P} = \frac{1}{3} \left(\frac{1}{4} (-1)^{4} - \frac{1}{4} (-1)^{4} \right) \\ \text{Rem P} = \frac{1}{3} \left(\frac{1}{4} (-1)^{4} - \frac{1}{4} ($$

$$f(x) = e^{x} \implies f'(x) = e^{x}$$
 Berivative of e^{x}

$$\gamma = g(v) \text{ where } v = f(x)$$

Examples Practice
(a) By the chain rule,
$$\frac{1}{dx} (e^{5x}) = 5e^{5x}$$

 $y = \int e^{5x} dx = \frac{1}{5} \int 5e^{5x} dx$
 $y = \int e^{5x} dx = \frac{1}{5} \int 5e^{5x} dx$
 $y = \frac{1}{5} e^{5x} + c$ (indefinite integral)
(integral integral)
(

 $f(x) = \sin x \implies f'(x) = \cos x$ } Derivative of sinx

$$\gamma = g(v)$$
 where $v = f(x)$
 $\implies \frac{dy}{dx} = \frac{dy}{dv} \times \frac{dv}{dx}$
Chain rule

$$\cos 2\theta = 2\cos^{2}\theta - 1 \implies \cos^{2}\theta = \frac{1}{2} + \frac{1}{2}\cos 2\theta$$

$$\int_{W_{4}}^{W_{4}} \cos^{2}\theta \, d\theta = \int_{W_{4}}^{W_{4}} \left(\frac{1}{2} + \frac{1}{2}\cos 2\theta\right) \, d\theta$$
By the chain rule, $\frac{d}{d\theta} (\sin 2\theta) = 2\cos 2\theta$

$$= \int_{W_{4}}^{W_{4}} \left(\frac{1}{2} + \frac{1}{4}(2\cos 2\theta)\right) \, d\theta$$

$$= \left[\frac{1}{2}\theta + \frac{1}{4}\sin 2\theta\right]_{W_{4}}^{W_{4}}$$

$$= \left[\frac{1}{2}(\frac{\pi}{2}) + \frac{1}{4}\sin 2(\frac{\pi}{2})\right] - \left(\frac{1}{2}(\frac{\pi}{4}) + \frac{1}{4}\sin 2(\frac{\pi}{4})\right)$$

$$= \frac{\pi}{4} - \frac{\pi}{8} + \frac{1}{4}\sin \pi - \frac{1}{4}\sin \frac{\pi}{2}$$

$$= \frac{\pi}{8} - \frac{1}{4}$$

$$\sin \pi = 0$$

$$\sin \frac{\pi}{2} = 1$$

Exam Papers Practice

$$f(x) = x^{n} \implies f'(x) = nx^{n-1} \quad \text{Berivative of } x^{n}$$

$$a) \quad f'(x) = 2(3x^{2}) + 4 = 6x^{2} + 4$$

 $\int \frac{1}{x} dx = \ln |x| + c$ } standard integral

b) Let
$$u = 2x^3 + 4x$$
. Then:
 $\frac{du}{dx} = (6x^2 + 4)$ from part (a)
 $= 2x^3 + 4x$. Then:
 $\frac{du}{dx} = (6x^2 + 4)$ from part (a)
 $= 2x^3 + 4x$. Then:
 $\frac{du}{dx} = (6x^2 + 4)$ from part (a)
 $= 2x^3 + 4x$. Then:
 $\frac{du}{dx} = (6x^2 + 4)$ from part (a)
 $= 2x^3 + 4x$. Then:
 $\frac{du}{dx} = (6x^2 + 4)$ from part (a)
 $= 2x^3 + 4x$. Then:
 $\frac{du}{dx} = (6x^2 + 4)$ from part (a)
 $= 2x^3 + 4x$. Then:
 $\frac{du}{dx} = (6x^2 + 4)$ from part (a)
 $= 2x^3 + 4x$. Then:
 $\frac{du}{dx} = (6x^2 + 4)$ from part (b)
 $= 2x^3 + 4x$. Then:
 $\frac{du}{dx} = (6x^2 + 4)$ from part (c)
 $= 2x^3 + 4x$. Then:
 $\frac{du}{dx} = (6x^2 + 4)$ from part (c)
 $\frac{du}{dx} = (6x$

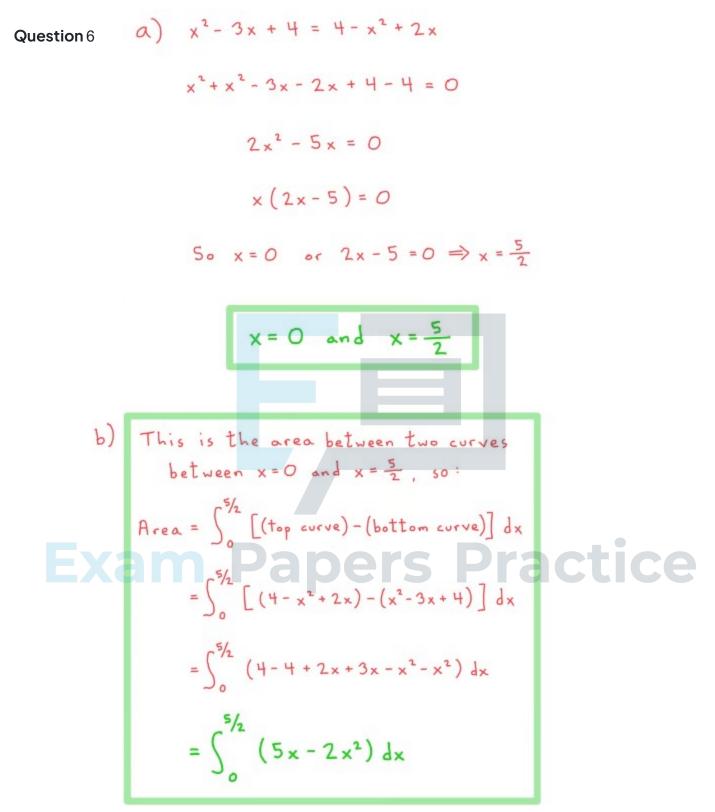
Example dx =
$$\int \frac{1}{2} \left(\frac{1}{2}\right) dv$$

= $\frac{1}{2} \int \frac{1}{2} dv$ Practice

$$=\frac{1}{2}\ln|u|+c$$

$$=\frac{1}{2}\ln|2x^{3}+4x|+c$$

Page 6



c) Area of R =
$$\int_{0}^{\frac{5}{2}} (5x - 2x^{2}) dx$$

= $\frac{125}{24}$ units² from GDC

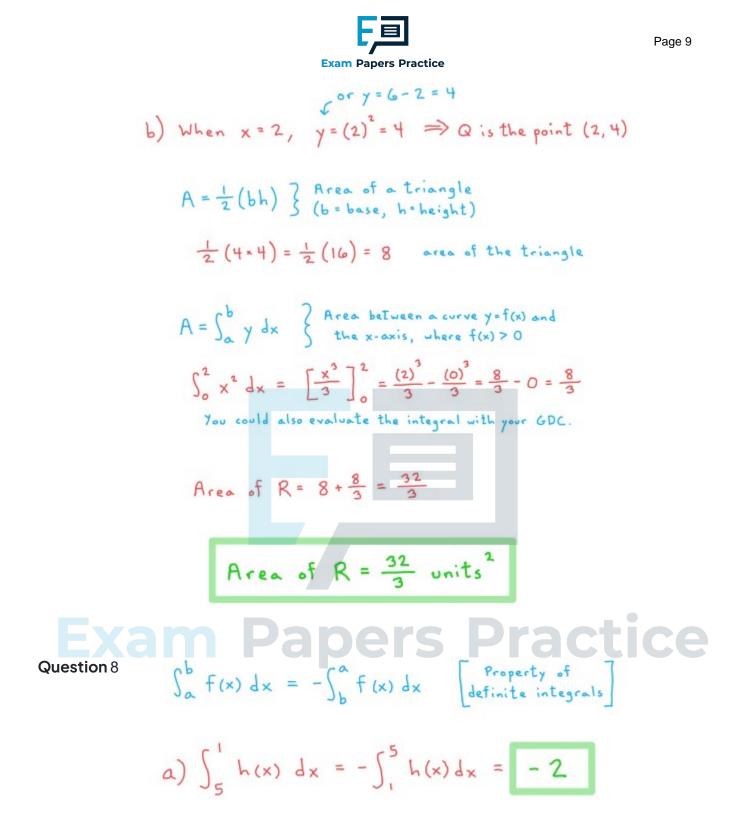
You could also work this out by hand via

 $\int_{0}^{5/2} (5x - 2x^{2}) dx = \left[\frac{5}{2}x^{2} - \frac{2}{3}x^{3}\right]_{0}^{5/2}$ $= \left(\frac{125}{8} - \frac{250}{24}\right) - (0 - 0) = \frac{125}{24}$ Question 7 a) $x^{2} = 0 \implies x = 0$ y = 0 on the x-oxis The x-coordinate of P = 0

Exam² = 6 -
$$x \Rightarrow x^3 + x - 6 \le 0$$
 Practice
 $(x+3)(x-2) = 0$
 $x = -3 \text{ or } x = 2$
But $x > 0$, so :

The x-coordinate of Q = 2

$$6 - x = 0 \implies x = 6$$
 $y = 0$ on the x-axis
The x-coordinate of $R = 6$



$$\int x^{n} dx = \frac{x^{n+1}}{n+1} + c \quad \begin{cases} \text{Integral of } x^{n} (n \neq -1) \\ \\ \int_{a}^{b} k f(x) dx = k \int_{a}^{b} f(x) dx \quad \begin{bmatrix} \text{Properties of} \\ \text{definite integrals} \end{bmatrix} \\ \int_{a}^{b} (f(x) \pm g(x)) dx = \int_{a}^{b} f(x) dx \pm \int_{a}^{b} g(x) dx \end{cases}$$

$$b) \int_{1}^{5} \frac{h(x) \pm 1}{2} dx = \int_{1}^{5} \frac{1}{2} (h(x) \pm 1) dx \\ = \frac{1}{2} \left(\int_{1}^{5} h(x) dx \pm \int_{1}^{5} 1 dx \right) \\ = \frac{1}{2} \left(\int_{1}^{5} h(x) dx \pm \int_{1}^{5} 1 dx \right)$$

$$R_{n} d \int_{1}^{5} \frac{h(x) \pm 1}{2} dx = f(x) = \frac{1}{2} (2 \pm 4) = 3$$

$$\int x^{n} dx = \frac{x^{n+1}}{n+1} + c \quad \int \text{Integral of } x^{n} (n \neq -1)$$

$$\int_{a}^{b} (f(x) \pm g(x)) dx = \int_{a}^{b} f(x) dx \pm \int_{a}^{b} g(x) dx$$
[Property of definite integrals]
$$c) \quad \int_{1}^{5} (h(x) + 2x) dx = \int_{1}^{5} h(x) dx + \int_{1}^{5} 2x dx$$
And
$$\int_{1}^{5} 2x dx = [x^{2}]_{1}^{5} = 5^{2} - 1^{2} = 25 - 1 = 24$$
So
$$\int_{1}^{5} (h(x) + 2x) dx = 2 + 24 = 26$$
Question 9
$$f(x) = x^{n} \implies f'(x) = nx^{n-1} \quad f'(x) = nx^{n}$$

$$f(x) = \ln x \implies f'(x) = \frac{1}{x} \quad f'(x) = nx \text{ for invative of } x^{n}$$

$$f(x) = \ln x \implies f'(x) = \frac{1}{x} \quad f'(x) = nx \text{ for invative of } x^{n}$$

$$x = \frac{dy}{dx} = \frac{dy}{dy} \times \frac{dy}{dx} \quad f'(x) = \frac{1}{2x^{2} + 1} \quad f'(x)$$

$$f'(x) = \frac{1}{2x^{2} + 1} \quad f'(x)$$

Page 12
Exam Papers Practice

$$\int djust$$
(b) $\int \frac{x}{2x^{2}+1} dx = \frac{1}{4} \int \frac{4x}{2x^{2}+1} dx$
(compensate)

$$\int \frac{dy}{dx} dx = y + c \quad (indefinite integral)$$

$$y = g(v) \text{ where } v = f(x)$$

$$\implies \frac{dy}{dx} = \frac{dy}{dv} \times \frac{dv}{dx}$$
Chain rule

f(x) = sin x => f'(x) = cos x } Derivative of sin x Exam Papers Practice

$$\int \frac{dy}{dx} = \sin(x^{3} + 1), \quad \text{Then}:$$

$$\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx} = (\cos(x^{3} + 1))(3x^{2}) = 3x^{2}\cos(x^{3} + 1)$$

$$f(x) = \int x^{2}\cos(x^{3} + 1) dx = \frac{1}{3}\int 3x^{2}\cos(x^{3} + 1) dx$$

$$\int \frac{dy}{dx} dx = y + c \quad (\text{indefinite integral})$$

$$\Rightarrow f(x) = \frac{1}{3}\sin(x^{3} + 1) + c$$

$$B_{0}t \quad f(-1) = 1, \quad so$$

$$\frac{1}{3}\sin((-1)^{3} + 1) + c = 1$$

$$\frac{1}{3}\sin(0) + c = 1 \quad sin(0) = 0$$
Example f(x) = $\frac{1}{3}\sin(x^{3} + 1) + Practic$