铛
 EXAM PAPERS PRACTICE

Boost your performance and confidence with these topic-based exam questions

Practice questions created by actual examiners and assessment experts

Detailed mark scheme
Suitable for all boards
Designed to test your ability and thoroughly prepare you

5.4 Further Integration

5.4.1 Integrating Special Functions

Integrating Trig Functions

How do lintegrate \sin , \cos and $\sec ^{\wedge}$ 2?

- The antiderivatives for sine and cosine are

$$
\begin{gathered}
\int \sin x d x=-\cos x+c \\
\int \cos x d x=\sin x+c
\end{gathered}
$$

where \boldsymbol{C} is the constant of integration

- Also, from the derivative of $\tan X$

$$
\int \sec ^{2} x d x=\tan x+c
$$

- The derivatives of $\sin x, \cos X$ and $\tan X$ are in the formula booklet
- so these antiderivatives can be easily deduced
- For the linear function $\mathbf{a x}+\boldsymbol{b}$, where \mathbf{a} and \boldsymbol{b} are constants,

$$
\begin{aligned}
& \int \sin (a x+b) d x=-\frac{1}{a} \cos (a x+b)+c \\
& \int \cos (a x+b) d x=\frac{1}{a} \sin (a x+b)+c \\
& \int \sec ^{2}(a x+b) d x=\frac{1}{a} \tan (a x+b)+c
\end{aligned}
$$

- Forcalculus with trigonometric functions angles must be measured in radians
- Ensure you know how to change the angle mode on your GDC

© Exam Tip

- The formula booklet can be used to find antiderivatives from the derivatives
- Make sure you have the page with the sectio n of stand ard derivative o pen
- Use these backwards to find any antiderivatives you need
- Remember to add 'c', the constant of integration, for any ind efinite integrals

Worked example

a) Find, in the form $\mathrm{F}(x)+c$, an expression for each integral
i. $\int \cos x d x$
ii. $\int \sec ^{2}\left(3 x-\frac{\pi}{3}\right) d x$
i.

$$
\int \cos x d x=\sin x+c
$$

ii.

b) A curve has equation $y=\int 2 \sin \left(2 x+\frac{\pi}{6}\right) \mathrm{d} x$.The curve passes $\begin{array}{r}\text { through the point }\end{array}$ with coordinates $\left(\frac{\pi}{3}, \sqrt{3}\right)$.

Find an expression for \boldsymbol{y}.

Copyright

$$
\begin{aligned}
& y=2\left[\sin \left(2 x+\frac{\pi}{6}\right) d x\right. \\
& y=2\left[-\frac{1}{2} \cos \left(2 x+\frac{\pi}{6}\right)\right]+c \\
& \text { At } x=\frac{\pi}{3}, y=\sqrt{3}, \quad \begin{aligned}
\sqrt{3} & =-\cos \left(\frac{2 \pi}{3}+\frac{\pi}{6}\right)+c \\
c & =\cos \left(\frac{5 \pi}{6}\right)+\sqrt{3} \\
c & =\frac{\sqrt{3}}{2}
\end{aligned}
\end{aligned}
$$

$$
\therefore y=\frac{\sqrt{3}}{2}-\cos \left(2 x+\frac{\pi}{6}\right)
$$

Integrating $e^{\wedge} \mathrm{x}$ \& $1 / \mathrm{x}$

How dolintegrate exponentials and $1 / x$?

- The antiderivatives involving $\mathbf{e}^{\boldsymbol{X}}$ and $\boldsymbol{\operatorname { l n }} \boldsymbol{X}$ are

$$
\begin{gathered}
\int \mathrm{e}^{x} \mathrm{~d} x=\mathrm{e}^{x}+c \\
\int \frac{1}{x} \mathrm{~d} x=\ln |x|+c
\end{gathered}
$$

where \boldsymbol{C} is the constant of integration

- These are given in the formula booklet
- For the linear function $(\mathbf{a x}+\boldsymbol{b})$, where \boldsymbol{a} and \boldsymbol{b} are constants,

$$
\begin{gathered}
\int \mathrm{e}^{a x+b} \mathrm{dx}=\frac{1}{\mathrm{a}} \mathrm{e}^{a x+b}+c \\
\int \frac{1}{a x+b} \mathrm{dx}=\frac{1}{\mathrm{a}} \ln |a x+b|+c
\end{gathered}
$$

- It follows from the last result that

$$
\int \frac{a}{a x+b} d x=\ln |a x+b|+c
$$

- which can be deduced using Reverse Chain Rule
- With In, it can be useful to write the constant of integration, \boldsymbol{C}, as a lo garithm

Copyright using the laws of logarithms, the answer can be written as a single term
© 2024 Ex

- $\int \frac{1}{\boldsymbol{x}} \mathrm{~d} \boldsymbol{x}=\ln |\boldsymbol{x}|+\ln \boldsymbol{k}=\ln \boldsymbol{k}|\boldsymbol{x}|$ where k is a constant
- This is similar to the special case of differentiating $\ln (a x+b)$ when $b=0$

- Exam Tip

- Make sure you have a copy of the formula booklet during revision but don't try to remember everything in the formula booklet
- However, do be familiar with the layout of the formula booklet
- You'll be able to quicklylocate whatever you are after
- You do not want to be searching everyline of every page!
- For formulae you think you have remembered, use the booklet to double-check

Worked example

A curve has the gradient function $f^{\prime}(x)=\frac{3}{3 x+2}+e^{4-x}$

Given the exact value of $f(1)$ is $\ln 10-\mathrm{e}^{3}$ find an expression for $f(x)$.

$$
\begin{aligned}
& f(x)=\int\left(\frac{3}{3 x+2}+e^{4-x}\right) d x \\
& f(x)=3 \int \frac{1}{3 x+2} d x+\int e^{4-x} d x
\end{aligned}
$$

$$
=3\left[\frac{1}{3} \ln |3 x+2|\right]-e^{4-x}+c
$$

Copyright
© 2024 Exam Papers Practice

$$
\begin{aligned}
& f(1)=\ln 10-e^{3}, \quad \ln |3 x|+2 \mid-e^{4-1}+c=\ln 10-e^{3} \\
& \therefore c=\ln 10-\ln 5 \\
& c=\ln \left(\frac{10}{5}\right)=\ln 2
\end{aligned}
$$

$$
\therefore f(x)=\ln |3 x+2|-e^{4-x}+\ln 2
$$

$$
\left(=\ln 2|3 x+2|-e^{4-x}\right)
$$

5.4.2 Techniques of Integration

Integrating Composite Functions (ax+b)

What is a composite function?

- A composite function involves one function being applied after ano ther
- A composite function may be described as a "function of a function"
- This Revision Note focuses on one of the functions being linear - i.e. of the form $\boldsymbol{a} \boldsymbol{X}+\boldsymbol{b}$

How dolintegrate linear ($a x+b$)functions?

- A linear function (of X) is of the form $a x+b$
- The special cases fortrigonometric functions and exponential and logarithm functions are
- $\int \sin (a x+b) \mathrm{d} x=-\frac{1}{a} \cos (a x+b)+c$
- $\int \cos (a x+b) \mathrm{d} x=\frac{1}{a} \sin (a x+b)+c$
- $\int \mathrm{e}^{a x+b} \mathrm{~d} x=\frac{1}{a} \mathrm{e}^{a x+b+c}$
- $\int \frac{1}{a x+b} \mathrm{~d} x=\frac{1}{a} \ln |a x+b|+c$
- There is one more special case
- $\int(a x+b)^{n} \mathrm{~d} x=\frac{1}{a(n+1)}(a x+b)^{n+1}+c$ where $n \in \mathbb{Q}, n \neq-1$
- 4 , in all cases, is the constant of integration
- All the above can be deduced using reverse chain rule
- However, spotting them can make solutions more efficient

(9) Exam Tip

- Although the specific formulae in this revision note are NOT in the formula booklet
- almost all of the information you will need to apply reverse chain rule is provided
- make sure you have the formula booklet open at the right page(s) and practice using it

Worked example

Find the following integrals
a) $\int 3(7-2 x)^{\frac{5}{3}} \mathrm{~d} x$

$$
\begin{aligned}
& I=\int 3(7-2 x)^{5 / 3} d x=3 \int(-2 x+7)^{5 / 3} d x \\
& \text { Using } \int(a x+b)^{n} d x=\frac{1}{a(n+1)}(a x+b)^{n+1}+c, \\
& I=3\left[\frac{1}{-2 \times \frac{8}{3}}(-2 x+7)^{8 / 3}\right]+c^{5 / 3+1}
\end{aligned}
$$

$$
\therefore I=-\frac{9}{16}(7-2 x)^{8 / 3}+c
$$

b) $\int \frac{1}{2} \cos (3 x-2) d x$

$$
I=\int \frac{1}{2} \cos (3 x-2) d x=\frac{1}{2} \int \cos (3 x-2) d x
$$

$$
\text { Using } \int \cos (a x+b) d x=\frac{1}{a} \sin (a x+b)+c
$$

Copyright

$$
\begin{aligned}
& I=\frac{1}{2}\left[\frac{1}{3} \sin (3 x-2)\right]+c \\
& \therefore I=\frac{1}{6} \sin (3 x-2)+c
\end{aligned}
$$

Reverse Chain Rule

What is reverse chain rule?

- The Chain Rule is a way of differentiating two (ormore) functions
- Reverse Chain Rule (RCR) refers to integrating by inspection
- spotting that chain rule would be used in the reverse (differentiating) process

How dolknow when to use reverse chain rule?

- Reverse chain rule is used when we have the product of a composite function and the derivative of its second function
- Integration is trickier than differentiation; many of the shortcuts do not work
- Forexample, in general $\int \mathrm{e}^{f(x)} \mathrm{d} x \neq \frac{1}{f^{\prime}(x)} \mathrm{e}^{f(x)}$
- However, this result is true if $f(x)$ is linear $(a x+b)$
- Formally, in function notation, reverse chainrule is used forintegrands of the form

$$
I=\int g^{\prime}(x) f(g(x)) \mathrm{d} x
$$

- this does not have to be strictly true, but 'algebraically'it should be
- if coefficients do not match 'adjust and compensate' can be used
- e.g. $5 x^{2}$ is not quite the derivative of $4 x^{3}$
- the algebraicpart $\left(X^{2}\right)$ is 'correct'
- but the coefficient 5 is 'wrong'
- use 'adjust and compensate' to 'correct'it
- A particularly us eful instance of reverse chain rule to recognise is

Copyright $\quad I=\int \frac{f^{\prime}(x)}{f(x)} \mathrm{d} x=\ln |f(x)|+c$

- i.e. the numerator is (almost) the derivative of the denominat or
- 'adjust and compensate' mayneed to be used to deal with anycoefficients
- e.g.

$$
I=\int \frac{x^{2}+1}{x^{3}+3 x} \mathrm{~d} x=\frac{1}{3} \int 3 \frac{x^{2}+1}{x^{3}+3 x} \mathrm{~d} x=\frac{1}{3} \int \frac{3 x^{2}+3}{x^{3}+3 x} \mathrm{~d} x=\frac{1}{3} \ln \left|x^{3}+3 x\right|+c
$$

How do lintegrate using reverse chain rule?

- If the product can be identified, the integrationcan be done "by inspection"
- there may be some "adjusting and compensating" to do
- Notice a lot of the "adjust and compensate method" happens mentally
- this is indicated in the steps below by quote marks

STEP 1

Spot the 'main' function
e.g. $I=\int x\left(5 x^{2}-2\right)^{6} \mathrm{~d} x$
"the main function is $(\ldots)^{6}$ which would come from $(\ldots)^{7 \text { " }}$

STEP 2

'Adjust' and 'compensate' any coefficients required in the integral
e.g. " (... $)^{7}$ would differentiate to $7(\ldots)^{6 "}$
"chain rule says multiply by the derivative of $5 x^{2}-2$, which is $10 x$ "
"there is no ' 7 ' or ' 10 ' in the integrand so adjust and compensate"
$I=\frac{1}{7} \times \frac{1}{10} \times \int 7 \times 10 \times x\left(5 x^{2}-2\right)^{6} \mathrm{~d} x$

STEP 3
Integrate and simplify
e.g. $I=\frac{1}{7} \times \frac{1}{10} \times\left(5 x^{2}-2\right)^{7}+c$
$I=\frac{1}{70}\left(5 x^{2}-2\right)^{7}+c$

- Differentiation can be used as a means of checking the final answer
- After some practice, you may find Step 2 is not needed
- Do use it onmore awkward questions (negatives and fractions!)
- If the product cannot easily be identified, use substitution

O Exam Tip

- Before the exam, practice this until you are confident with the pattern and do not need to worry about the formula orsteps anymore
- This will save time in the exam
- You can always check yourwork by differentiating, if you have time

Worked example

A curve has the gradient function $f^{\prime}(x)=5 x^{2} \sin \left(2 x^{3}\right)$.
Given that the curve passes through the point $(0,1)$, find an expression for $\mathrm{f}(x)$.
$f(x)=\int 5 x^{2} \sin \left(2 x^{3}\right) d x$
$f(x)=5 \int x^{2} \sin \left(2 x^{3}\right) d x \quad$ Take 5 out os a factor

This is a product, almost in the form $g^{\prime}(x) f(g(x))$
STEP 1: Spot the 'main' function

STEP 2: 'Adjust and compensate' coefficients

$$
f(x)=5 x-\times \frac{1}{6} \times \int-\times 6 \times x^{2} \sin \left(2 x^{3}\right) d x
$$

$$
\uparrow \uparrow \uparrow \uparrow
$$

compensate adjust
STEP 3: Integrate and simplify

$$
f(x)=-\frac{5}{6} \cos \left(2 x^{3}\right)+c
$$

Substitution: Reverse Chain Rule

What is integration by substitution?

- When reverse chain rule is difficult to spot or awkward to use then integration bysubstitution can be used
- substitution simplifies the integral by defining an alternative variable (usually \boldsymbol{U}) in terms of the original variable (usually \boldsymbol{X})
- everything (including " $\mathrm{d} X$ " and limits for definite int egrals) is then substituted which makes the integration much easier

How dolintegrate using substitution?

STEP 1

Identify the substitution to be used - it will be the second ary function in the composite function

So $g(x)$ in $f(g(x))$ and $u=g(x)$
STEP 2
Differentiate the substitution and rearrange
$\frac{\mathrm{d} u}{\mathrm{~d} X}$ can be treated like a fraction
(i.e. "multiply by $\mathrm{d} \boldsymbol{X}$ " to get rid of fractions)

STEP 3
Replace all parts of the integral
All \boldsymbol{X} terms should be replaced with equivalent \boldsymbol{U} terms, including $\mathrm{d} \boldsymbol{X}$
If find ing a definite int egral change the limits from \boldsymbol{X}-values to \boldsymbol{U}-values too
STEP 4
Integrate and either
substitute X backin
or
evaluate the definte integral using the \boldsymbol{U} limits (either using a GDC ormanually)

STEP 5
Find \boldsymbol{C}, the constant of integration, if needed

- Fordefinite integrals, a GDC should be able to process the integral without the need for a substitution
- be clear about whetherworking is required ornot in a question

© Exam Tip

- Use your GDC to check the value of a definite integral, even in cases where working needs to be shown
a) Find the integral

$$
\int \frac{6 x+5}{\left(3 x^{2}+5 x-1\right)^{3}} d x
$$

STEP 1: Identify the substitution
The composite function is $\left(3 x^{2}+5 x-1\right)^{3}$
The secondary function of this is $3 x^{2}+5 x-1$

$$
\therefore \text { Let } 0=3 x^{2}+5 x-1
$$

STEP 2: Differentiate u and rearrange

$$
\begin{aligned}
& \frac{d u}{d x}=6 x+5 \\
& \therefore d u=(6 x+5) d x
\end{aligned}
$$

STEP 3: Replace all parts of the integral

$$
\begin{aligned}
I=\int \frac{6 x+5}{\left(3 x^{2}+5 x-1\right)^{2}} d x & =\int \frac{d v}{v^{3}} \\
& =\int v^{-3} d u
\end{aligned}
$$

STEP M: Integrate and substitute x back in

$$
\text { (STEP } 5 \text { not needed, evaluating } c \text { is not required) }
$$

Copyright

$$
\begin{aligned}
& I=\frac{v^{-2}}{-2}+c \\
& I=-\frac{1}{2}\left(3 x^{2}+5 x-1\right)^{-2}+c
\end{aligned}
$$

$$
\therefore I=\frac{-1}{2\left(3 x^{2}+5 x-1\right)^{2}}+c
$$

b) Evaluate the integral

$$
\int_{1}^{2} \frac{6 x+5}{\left(3 x^{2}+5 x-1\right)^{3}} d x
$$

Exam Papers Practice
giving your answer as an exact fraction in its simplest terms.
Note that you could use your GOC for this part
Certainly use it to check your answer!
From STEP 3 above, $I=\int_{x=1}^{x=2} u^{-3} d v$
Change limits too, $x=1, \quad 0=3(1)^{2}+5(1)-1=7$
$x=2, \quad v=3(2)^{2}+5(2)-1=21$
STEP 1: Integrate and evaluate

$$
I=\left[-\frac{1}{2} v^{-2}\right]_{7}^{21}=\left[-\frac{1}{2}(21)^{-2}\right]-\left[-\frac{1}{2}(7)^{-2}\right]
$$

$$
\therefore I=\frac{4}{441}
$$

5.4.3 Definite Integrals

Definite Integrals

What is a definite integral?

$$
\int_{a}^{b} f(x) d x=[F(x)]_{a}^{b}=F(b)-F(a)
$$

- This is known as the Fundament al Theorem of Calculus
- \boldsymbol{a} and \boldsymbol{b} are called limits
- ais the lowerlimit
- bis the upper limit
- $\mathrm{f}(x)$ is the integrand
- $\mathrm{F}(x)$ is an antiderivative of $\mathrm{f}(x)$
- The constant of integration (" $+c$ ") is not needed in definite integration
- " $+c$ " would appear alongside both $F(a)$ and $F(b)$
- subtracting means the " $+c$ "'s cancel

How dolfind definite integrals analytically (manually)?

STEP 1

Give the integral a name to save having to rewrite the whole integral every time If need be, rewrite the integral into an integrable form

Exam Pars frydor Practice

STEP2ers Practice
Integrate without applying the limits; you will not need " $+c$ "
Notation: use square brackets [] with limits placed at the end bracket

STEP 3
Substitute the limits into the function and evaluate

(9) Exam Tip

- If a question does not state that you can use your GDC then you must show all of your working clearly, however it is always good practice to check you answer by using your GDC if you have it in the exam

Worked example
a)

Show that

$$
\int_{2}^{4} 3 x\left(x^{2}-2\right) \mathrm{d} x=144
$$

STEP 1: Name the integral and rewrite into an integratable form

$$
I=\int_{2}^{4}\left(3 x^{3}-6 x\right) d x
$$

STEP 2: Integrate

$$
I=\left[\frac{3}{4} x^{4}-3 x^{2}\right]_{2}^{4}
$$

STEP 3: Evaluate

$$
\begin{aligned}
& I=\left[\frac{3}{4}(4)^{4}-3(4)^{2}\right]-\left[\frac{3}{4}(2)^{4}-3(2)^{2}\right] \\
& I=144-0
\end{aligned}
$$

$$
\therefore \int_{2}^{4} 3 x\left(x^{2}-2\right)=144
$$

b) Use your GDC to evaluate

Using GDC,

$$
\int_{0}^{1} 3 e^{x^{2} \sin x} d x=3.872957 \ldots
$$

$$
\therefore \int_{0}^{1} 3 e^{x^{2} \sin x} d x=3.87 \quad \text { (3 sf.) }
$$

Properties of Definite Integrals

Fundamental Theoremof Calculus

$$
\int_{a}^{b} \mathrm{f}(x) d x=[\mathrm{F}(x)]_{a}^{b}=\mathrm{F}(b)-\mathrm{F}(a)
$$

- Formally,
- $\mathrm{f}(x)$ is continuous in the interval $a \leq x \leq b$
- $\mathrm{F}(x)$ is an antiderivative of $\mathrm{f}(x)$

What are the properties of definite integrals?

- Some of the se have been encountered already and some may seem obvious ...
- taking constant factors outside the integral
- $\int_{a}^{b} k f(x) \mathrm{d} x=k \int_{a}^{b} \mathrm{f}(x) \mathrm{d} x$ where k is a constant
- useful when fractional and/ornegative values involved
- integrating term byterm
- $\int_{a}^{b}[\mathrm{f}(x)+\mathrm{g}(x)] \mathrm{d} x=\int_{a}^{b} \mathrm{f}(x) \mathrm{d} x+\int_{a}^{b} \mathrm{~g}(x) \mathrm{d} x$
- the above works for subtraction of terms/functions too
- equal upper and lowerlimits
- $\int_{a}^{a} \mathrm{f}(x) d x=0$
- on evaluating, this would be a value, subtract its elf!
- swapping limits gives the same, but negative, result
- $\int_{a}^{b} \mathrm{f}(x) \mathrm{d} x=-\int_{b}^{a} \mathrm{f}(x) \mathrm{d} x$
- compare 8 subtract 5 say, with 5 subtract 8 ...
- splitting the interval
- $\int_{a}^{b} \mathrm{f}(x) \mathrm{d} x=\int_{a}^{c} \mathrm{f}(x) \mathrm{d} x+\int_{c}^{b} \mathrm{f}(x) \mathrm{d} x$ where $a \leq c \leq b$
- this is particularly useful for areas under multiple curves or areas under the X-axis
- horizontal translations
- $\int_{a}^{b} \mathrm{f}(x) \mathrm{d} x=\int_{a-k}^{b-k} \mathrm{f}(x+k) \mathrm{d} x$ where k is a constant
- the graph of $y=\mathrm{f}(x \pm k)$ is a ho rizo ntal translation of the graph of $y=\mathrm{f}(x)$ ($\mathrm{f}(x+k)$ translates left, $\mathrm{f}(x-k)$ trans lates right)

- Exam Tip

- Learning the properties of definite integrals can help to save time in the exam

Exam Papers Practice

Worked example

$\mathrm{f}(x)$ is a continuous function in the interval $5 \leq x \leq 15$.
It is known that $\int_{5}^{10} f(x) d x=12$ and that $\int_{10}^{15} f(x) d x=5$.
a) Write do win the values of
i)

$$
\int_{7}^{7} \mathrm{f}(x) \mathrm{d} x
$$

ii)

$$
\int_{10}^{5} f(x) d x
$$

i.

$$
\int_{7}^{7} f(x) d x=0
$$

"equal limits"

$$
\int_{a}^{a} f(x) d x=0
$$

"swapped limits"
$\int_{b}^{a} f(x) d x=-\int_{a}^{b} f(x) d x$
ii.

$$
\int_{10}^{5} f(x) d x=-12
$$

b) Find the values of
i)
ii) $\quad \int_{5}^{10} 6 \mathrm{f}(x+5) \mathrm{d} x$
(C) 2024 Exam Papers Practice

$$
\begin{aligned}
& \text { i. } I=\int_{5}^{15} f(x) d x=\int_{5}^{10} f(x) d x+\int_{10}^{15} f(x) d x=12+5=17 \\
& \text { "split limits" } \\
& \int_{a}^{b} f(x) d x=\int_{a}^{c} f(x) d x+\int_{c}^{a} f(x) d x \\
& \therefore \int_{5}^{15} f(x) d x=17 \\
& \text { ii. } I=\int_{5}^{10} 6 f(x+5)=6 \int_{5}^{10} f(x+5) d x \\
& \text { "factors" } \\
& \int_{a}^{b} k f(x) d x=k \int_{a}^{b} f(x) d x \\
& I=6 \int_{5+5}^{10+5} f(x) d x \\
& \text { "horizontal translation" } \\
& \int_{a}^{b} f(x+k) d x=\int_{a+k}^{b+k} f(x) d x \\
& I=6 \int_{10}^{15} f(x) d x=6 \times 5=30 \\
& \int_{5}^{10} 6 \text { flectsper } 30
\end{aligned}
$$

s Practice

5.4.4 Further Applications of Integration

Negative Integrals

- The area und er a curve may appearfully orpartially under the x-axis
- This occurs when the function $f(\boldsymbol{X})$ takes negative values within the boundaries of the area
- The definite int egrals used to find such areas
- will be negative if the area is fully under the \boldsymbol{X}-axis
- possibly negative if the area is partially under the \boldsymbol{X}-axis
- this occurs if the negative areas) is/are greater than the positive areas), their sum will be negative
- When using a GDC use the mo dulus (absolute value) function so that all definite integrals have a positive value

$$
A=\int_{a}^{b}|y| \mathrm{d} x
$$

Exam Papers Practice

- This is given in the formula booklet

How do Ifind the area under a curve when the curve is fully under the x-axis?

STEP 1
Write the expression for the definite integral to find the area as usual
This may involve find ing the lower and upperlimits from graph sketch or GDC and $f(x)$ may need to be rewritten in an integrable form

STEP 2

The answer to the definite integral will be negative

Area must always be positive so take the modulus (absolute value) of it
e.g. If $I=-36$ then the area wo uld be 36 (s quare units)

How do Ifind the area under a curve when the curve is partially underthe x-axis?

- For questions that allow the use of a GDC you can still use

$$
A=\int_{a}^{c}|f(x)| \mathrm{d} x
$$

- To find the area analytic ally (manually) use the following method

STEP 1

Split the area into parts - the area(s) that are above the x-axis and the area(s) that are below the x-axis

STEP 2

Write the expression for the definite integral foreach part (give each part a name, I_{7}, l_{2}, etc)
This may involve finding the lower and upper limits of each part from a graph sketch or a GDC,
finding the roots of the function (i.e. where $f(x)=0$) and rewriting $f(x)$ in an integrable form

STEP 3

Find the value of each definite integral separately

STEP 4

Find the area bysumming the mo dulus (absolute values) of each integral
(Mathematic ally this would be written $A=\left|I_{1}\right|+\left|I_{2}\right|+\left|I_{3}\right|+\ldots$)

- Exam Tip

- If no diagram is provided, quicklysketch one so that you can see where the curve is above and below the x - axis and split up your integrals accordingly

Worked example

The diagram below shows the graph of $y=f(x)$ where $f(x)=(x+4)(x-1)(x-5)$.

The region R_{1} is bounded by the curve $y=f(x)$, the X-axis and the y-axis.
The region R_{2} is bounded by the curve $y=f(x)$, the x-axis and the line $x=3$.
a) Determine the coordinates of the point labelled \boldsymbol{P}.

> a) The x-coordinate of P is a root of $f(x)$
> $f(x)=0$
> $(x+4)(x-1)(x-5)=0$
> $x=-4, x=1, x=5$
> Clearly from the graph, $x=1$ at point P
> $\therefore P(1,0)$
b)
i)

Find a definite integral that would help find the area of the shaded region R_{2} and briefly explain why this would not give the area of the region R_{2}.
ii) Find the exact area of the shaded region R_{2}.
b) i)
$I_{2}=\int_{1}^{3}(x+4)(x-1)(x-5) d x$
R_{2} is underneath the x-axis so the
value of the definite integral will be negative. Area cannot be negative.
ii) STEP 1:
$I_{2}=\int_{1}^{3}(x+4)(x-1)(x-5) d x$
$I_{2}=\int_{1}^{3}\left(x^{2}+3 x-4\right)(x-5) d x \quad$ Rewitte in an integrable form $I_{2}=\int_{1}^{3}\left(x^{3}-2 x^{2}-19 x+20\right) d x$
$I_{2}=\left[\frac{x^{4}}{4}-\frac{2 x^{3}}{3}-\frac{19 x^{2}}{2}+20 x\right]_{1}^{3} \quad$ Integrate (no need for " $+c^{\prime \prime}$)
$I_{2}=\left(\frac{3^{4}}{4}-\frac{2(3)^{3}}{3}-\frac{19(3)^{2}}{2}+20(3)\right)-\left(\frac{1}{4}-\frac{2}{3}-\frac{19}{2}+20\right)$
$I_{2}=-\frac{93}{4}-\frac{121}{12}$ $I_{2}=-\frac{100}{3}$

STEP 2:

$$
\therefore \text { Area of } R_{2}, A_{2}=\frac{100}{3} \text { square units }
$$

c) Find the exact total area of the shaded regions, R_{1} and R_{2}
c) STEP 1, 2: $A_{1}=I_{1}=\int_{0}^{1}\left(x^{3}-2 x^{2}-19 x+20\right) d x$

Use the relevant
$I_{1}=\left[\frac{x^{4}}{4}-\frac{2 x^{3}}{3}-\frac{19 x^{2}}{2}+20 x\right]_{0}^{1}$
(C) 2024 Exa

STEP 3: $\quad I_{1}=\frac{121}{12}-0$
STEP 4: $\quad \therefore A_{1}+A_{2}=\frac{121}{12}+\frac{100}{3}=\frac{521}{12}$
\therefore Total area shaded $=\frac{521}{12}$ square units
You can check the final answer using your GOC
and the formula (in booklet) $A=\int_{a}^{b}|y| d x$.
Here, $A=\int_{0}^{3}|(x+4)(x-1)(x-5)| d x$ $A=43.41666 \ldots$
(Note that our GOC was not able to produce the exact anower...)

Exam Papers Practice

Area Between a Curve and a Line

- Areas whose bound aries include a curve and a (non-vertical) straight line can be found using integration
- For an area under a curve a definite int egral will be needed
- For an area under a line the shape formed will be a trapezium or triangle
- basic area formulae can be used rather than a definite integral
- (although a definite integral would still work)
- The area required could be the sum ordifference of areas under the curve and line

Copyright
© 2024 Exam Papers Practice

How dol find the area bet ween a curve and a line?

STEP 1

If not given, sketch the graphs of the curve and line on the same diagram Use a GDC to help with this step

STEP 2

Find the intersections of the curve and the line
Copyright
If no diagram is given this will help id entify the area(s) to be found

STEP 3
Determine whether the area required is the sum or difference of the area under the curve and the area under the line

Calculate the area under a curve using a integral of the form

$$
\int_{a}^{b} y \mathrm{~d} x
$$

Calculate the area under a line using either $A=\frac{1}{2} b h$ for a triangle or $A=\frac{1}{2} h(a+b)$ fora trapezium(y-coordinates will be needed)

STEP 4
Evaluate the definite integrals and find their sum ordifference as necessary to obtain the area required

(9) Exam Tip

- Add informationto any diagram provided
- Add axes intercepts, as well as intercepts between lines and curves
- Mark and shade the area you're trying to find
- If no diagram is provided, sketchone!

Worked example

The region R is bounded by the curve with equation $y=10 x-x^{2}-16$ and the line with equation $y=8-x$
R lies entirely in the first quadrant.
a) Using your GDC, or otherwise, sketch the graphs of the curve and the line on the same diagram.
Identify and label the region R onyour sketch and use your GDC to find the \boldsymbol{X} -
coordinates of the points of intersection between the curve and the line.
STEP I:
Copyright
C 2024 Exam Papers

TEP $2:$

b) i) Write down an integral that would find the area of the region R.
ii) Find the area of the region R.

Exam Papers Practice
i) STEP 3: Curve is 'upper' boundary of R
$\therefore y_{1}=10 x-x^{2}-16$
$y_{2}=8-x$
$y_{1}-y_{2}=10 x-x^{2}-16-(8-x)=11 x-x^{2}-24$
\therefore Area of $R, A_{R}=\int_{3}^{8}\left(11 x-x^{2}-24\right) d x$
ii) STEP 4:

$$
\begin{aligned}
& A_{R}=\int_{3}^{8}\left(11 x-x^{2}-24\right) d x \\
& A_{R}=\left[\frac{11 x^{2}}{2}-\frac{x^{3}}{3}-24 x\right]_{3}^{8} \\
& A_{R}=\left[\frac{11(8)^{2}}{2}-\frac{(8)^{3}}{3}-24(3)\right]-\left[\frac{11(3)^{2}}{2}-\frac{(3)^{3}}{3}-24(3)\right] \\
& A_{R}=-\frac{32}{3}--\frac{63}{2}
\end{aligned}
$$

\therefore Area of region R is $\frac{125}{6}$ square units

Area Between 2 Curves

- Areas whose bound aries include two curves can be found byintegration
- The areabetween two curves will be the difference of the areas under the two curves
- both areas will require a definite integral
- Finding points of intersection may involve a more awkward equation than solving for a curve and a line

How dol find the area between two curves?

STEP 1

If not given, sketch the graphs of both curves on the same diagram
Us e a GDC to help with this step

STEP 2

Find the intersections of the two curves
If no diagram is given this will help identify the area(s) to be found

STEP 3

For each area (there may only be one) determine which curve is the 'upper' bo und ary
For each area, write a definite integral of the form

$$
\int_{a}^{b}\left(y_{1}-y_{2}\right) d x
$$

where y_{1} is the function for the 'upper' boundary and y_{2} is the function for the 'lower' boundary
Be careful when there is more than one region - the 'upper' and 'lower' boundaries will swap

E目
 Exam Papers Practice

STEP 4
Evaluate the definite integrals and sum them up to find the total area
(Step 3 means no definite integral will have a negative value)

- Exam Tip

- If no diagram is provided sketch one, even if the curves are not accurate
- Add information to any given diagram as you work through a question
- Maximise use of your GDC to save time and maintain accuracy:
- Use it to sketch the graphs and help you visualise the problem
- Use it to find definite integrals

Worked example

The diagram below shows the curves with equations $y=\mathrm{f}(x)$ and $y=g(x)$ where

$$
f(x)=(x-2)(x-3)^{2}
$$

$$
\mathrm{g}(x)=x^{2}-5 x+6
$$

Find the area of the shaded region.

STEP 1: Sketch of graph given
STEP 2: Two intersections are the roots of $f(x)$

$$
f(x)=(x-2)(x-3)^{2}=0 \quad \text { at } x=2, \quad(y=0)
$$

and $x=3 \quad(y=0)$
Solve $f(x)=g(x)$ to find the other intersection
$(x-2)(x-3)^{2}=x^{2}-5 x+6$
$(x-2)(x-3)^{2}=(x-2)(x-3)$

$$
x-3=1
$$

$$
x=4, \quad y=(4-2)(4-3)=2
$$

STEP 3: The area, A_{1} of the first region is given by $A_{1}=\int_{2}^{3}\left[(x-2)(x-3)^{2}-\left(x^{2}-5 x+6\right)\right] d x$
$A_{1}=\int_{2}^{3}(x-2)(x-3)[(x-3)-1] d x \quad$ Factorise $(x-2)(x-3)$
$A_{1}=\int_{2}^{3}\left(x^{2}-5 x+6\right)(x-4) d x$
$A_{1}=\int_{2}^{3}\left(x^{3}-9 x^{2}+26 x-24\right) d x$
$A_{1}=\left[\frac{x^{4}}{4}-3 x^{3}+13 x^{2}-24 x\right]_{2}^{3}$
$A_{1}=\left(\frac{(3)^{4}}{4}-3(3)^{3}+13(3)^{2}-24(3)\right)-\left(\frac{(2)^{4}}{4}-3(2)^{3}+13(2)^{2}-24(2)\right)$
$A_{1}=-\frac{63}{4}--16=\frac{1}{4}$
For A_{2}. the 'upper' and 'lower' boundaries swap
$A_{2}=\int_{3}^{4}\left[\left(x^{2}-5 x+6\right)-(x-2)(x-3)^{2}\right] d x$
$A_{2}=\int_{3}^{4}(x-2)(x-3)[1-(x-3)] d x$
$A_{2}=\int_{3}^{4}\left(x^{2}-5 x+6\right)(4-x) d x$
Copyright
$A_{2}=\int_{3}^{4}\left(-x^{3}+9 x^{2}-26 x+24\right) d x$
$A_{2}=\left[\frac{-x^{4}}{4}+3 x^{3}-13 x^{2}+24 x\right]_{3}^{4}$
$A_{2}=\left(-\frac{(4)^{4}}{4}+3(4)^{3}-13(4)^{2}+24(4)\right)-\left(\frac{-(3)^{4}}{4}+3(3)^{3}-13(3)^{2}+24(3)\right)$
$A_{2}=16-\frac{63}{4}=\frac{1}{4}$

Total area is $A_{1}+A_{2}$
\therefore Area of shaded region is $\frac{1}{2}$ square unit

