铛
 EXAM PAPERS PRACTICE

Boost your performance and confidence with these topic-based exam questions

Practice questions created by actual examiners and assessment experts

Detailed mark scheme
Suitable for all boards
Designed to test your ability and thoroughly prepare you

5.4 Further Integration

5.4.1 Integrating Special Functions

Integrating Trig Functions

How do lintegrate \sin , \cos and $1 / \cos ^{2}$?

- The antiderivatives for sine and cosine are

$$
\begin{gathered}
\int \sin x d x=-\cos x+c \\
\int \cos x d x=\sin x+c
\end{gathered}
$$

where \boldsymbol{C} is the constant of integration

- Also, from the derivative of $\tan X$

$$
\int \frac{1}{\cos ^{2} x} d x=\tan x+c
$$

- All three of these stand ard integrals are in the formula booklet
- Forthe linear function $\mathbf{a x}+\boldsymbol{b}$, where \mathbf{a} and \boldsymbol{b} are constants,

$$
\begin{aligned}
& \int \sin (a x+b) d x=-\frac{1}{a} \cos (a x+b)+c \\
& \int \cos (a x+b) d x=\frac{1}{a} \sin (a x+b)+c \\
& \int \frac{1}{\cos ^{2}(a x+b)} d x=\frac{1}{a} \tan (a x+b)+c
\end{aligned}
$$

- For calculus with trigonometric functions angles must be measured in radians
- Ensure you know how to change the angle mode on your GDC

© Exam Tip

- Make sure you have a copy of the formula booklet during revision but don't try to remember everything in the formula bo oklet
- However, do be familiar with the layout of the formula booklet
- You'll be able to quickly locate whateveryou are after
- You do not want to be searching everyline of everypage!
- For formulae you think you have remembered, use the booklet to double-check

Worked example

a) Find, in the form $\mathrm{F}(\boldsymbol{X})+\boldsymbol{c}$, an expression fo reach integral
i. $\int \cos x d x$
ii. $\int \frac{1}{\cos ^{2}\left(3 x-\frac{\pi}{3}\right)} d x$
i.

ii.

$$
\int \frac{1}{\cos ^{2}\left(3 x-\frac{\pi}{3}\right)} d x=\frac{1}{3} \tan \left(3 x-\frac{\pi}{3}\right)+c
$$

b) A curve has equation $y=\int 2 \sin \left(2 x+\frac{\pi}{6}\right) \mathrm{d} x \begin{array}{r}\text { The curve passes } \\ \text { through the point } \\ \text { with coordinates }\end{array}$

$$
\left(\frac{\pi}{3}, \sqrt{3}\right)
$$

Find an expression for y.
Copyright
© 2024 Exam

$$
\begin{aligned}
& y=2 \int \sin \left(2 x+\frac{\pi}{6}\right) d x \\
& y=2\left[-\frac{1}{2} \cos \left(2 x+\frac{\pi}{6}\right)\right]+c \\
& \text { At } x=\frac{\pi}{3}, y=\sqrt{3}, \quad \sqrt{3}=-\cos \left(\frac{2 \pi}{3}+\frac{\pi}{6}\right)+c \\
& c=\cos \left(\frac{5 \pi}{6}\right)+\sqrt{3} \\
& c=\frac{\sqrt{3}}{2} \\
& \therefore y=\frac{\sqrt{3}}{2}-\cos \left(2 x+\frac{\pi}{6}\right)
\end{aligned}
$$

Integrating $e^{\wedge} x$ \& 1/x

How dolintegrate exponentials and 1/x?

- The antiderivatives involving $\mathbf{e}^{\boldsymbol{X}}$ and $\boldsymbol{\operatorname { l n }} \boldsymbol{X}$ are

$$
\begin{gathered}
\int \mathrm{e}^{x} \mathrm{~d} x=\mathrm{e}^{x}+c \\
\int \frac{1}{x} \mathrm{~d} x=\ln |x|+c
\end{gathered}
$$

where \boldsymbol{C} is the constant of integration

- These are given in the formula booklet
- Forthe linear function $(\mathbf{a x}+\boldsymbol{b})$, where \boldsymbol{a} and \boldsymbol{b} are constants,

$$
\begin{gathered}
\int \mathrm{e}^{a x+b} \mathrm{dx}=\frac{1}{a} \mathrm{e}^{a x+b}+c \\
\int \frac{1}{a x+b} d x=\frac{1}{a} \ln |a x+b|+c
\end{gathered}
$$

- It follows from the last result that

$$
\int \frac{a}{a x+b} d x=\ln |a x+b|+c
$$

- which can be deduced using Reverse Chain Rule
- With In, it can be useful to write the constant of integration, \boldsymbol{C}, as a logarithm
- using the laws of logarithms, the answer can be written as a single term
- $\int \frac{1}{\boldsymbol{x}} \mathbf{d} \boldsymbol{x}=\ln |\boldsymbol{x}|+\ln \boldsymbol{k}=\ln \boldsymbol{k}|\boldsymbol{x}|$ where k is a constant
- This is similar to the special case of differentiating $\ln (a x+b)$ when $b=0$

(9) Exam Tip

- When revising, familiarise yo urs elf with the layout of this section of the formula booklet, make sure you know what is and isn't in there and how to find it very quickly

Exam Papers Practice

Worked example

A curve has the gradient function $f^{\prime}(x)=\frac{3}{3 x+2}+\mathrm{e}^{4-x}$.

Given the exact value of $f(1)$ is $\ln 10-\mathrm{e}^{3}$ find an expression for $f(x)$.

$$
\begin{aligned}
f(x) & =\int\left(\frac{3}{3 x+2}+e^{4-x}\right) d x \\
f(x) & =3 \int \frac{1}{3 x+2} d x+\int e^{4-x} d x \\
& =3\left[\frac{1}{3} \ln |3 x+2|\right]-e^{4-x}+c \\
f(1) & =\ln 10-e^{3}, \quad \ln |3 x|+2 \mid-e^{4-1}+c=\ln 10-e^{3} \\
\therefore c & =\ln 10-\ln 5 \\
c & =\ln \left(\frac{10}{5}\right)=\ln 2
\end{aligned}
$$

$$
\therefore f(x)=\ln |3 x+2|-e^{4-x}+\ln 2
$$

$$
\left(=\ln 2|3 x+2|-e^{4-x}\right)
$$

5.4.2 Techniques of Integration

Integrating Composite Functions (ax+b)

What is a composite function?

- A composite function involves one function being applied after ano ther
- A composite function maybe described as a "function of a function"
- This Revision Note focuses on one of the functions being linear - i.e. of the form $\boldsymbol{a} \boldsymbol{X}+\boldsymbol{b}$

How dolintegrate linear ($a x+b$)functions?

- Alinear function (of X) is of the form $a x+b$
- The special cases fortrigo no metric functions and exponential and logarithm functions are
- $\int \sin (a x+b) \mathrm{d} x=-\frac{1}{a} \cos (a x+b)+c$
- $\int \cos (a x+b) d x=\frac{1}{a} \sin (a x+b)+c$
- $\int \mathrm{e}^{a x+b} \mathrm{~d} x=\frac{1}{a} \mathrm{e}^{a x+b}+c$
- $\int \frac{1}{a x+b} \mathrm{~d} x=\frac{1}{a} \ln |a x+b|+c$
- There is one more special case
- $\int(a x+b)^{n} \mathrm{~d} x=\frac{1}{a(n+1)}(a x+b)^{n+1}+c$ where $n \in \mathbb{Q}, n \neq-1$
- \boldsymbol{C}, in all cases, is the constant of int egration
- All the above can be deduced using reverse chain rule
- However, spotting them can make solutions more efficient

(?) Exam Tip

- Although the specific formulae in this revision note are NOT in the formula booklet
- almost all of the information yo u will need to apply reverse chain rule is provided
- make sure you have the formula booklet open at the right page(s) and practice using it

Worked example

Find the following integrals
a) $\int 3(7-2 x)^{\frac{5}{3}} \mathrm{~d} x$

$$
\begin{aligned}
& I=\left[3(7-2 x)^{5 / 3} d x=3 \int(-2 x+7)^{5 / 3} d x\right. \\
& U \operatorname{sing} \int(a x+b)^{n} d x=\frac{1}{a(n+1)}(a x+b)^{n+1}+c, \\
& I=3\left[\frac{1}{-2 \times \frac{8}{3}}(-2 x+7)^{8 / 3}+c^{5 / 3+1}\right. \\
& \therefore I=-\frac{9}{16}(7-2 x)^{8 / 3}+c
\end{aligned}
$$

b) $\int \frac{1}{2} \cos (3 x-2) d x$

$$
I=\int \frac{1}{2} \cos (3 x-2) d x=\frac{1}{2} \int \cos (3 x-2) d x
$$

$$
\text { Using } \int \cos (a x+b) d x=\frac{1}{a} \sin (a x+b)+c
$$

$$
I=\frac{1}{2}\left[\frac{1}{3} \sin (3 x-2)\right]+c
$$

$$
\therefore I=\frac{1}{6} \sin (3 x-2)+c
$$

Reverse Chain Rule

What is reverse chain rule?

- The Chain Rule is a way of differentiating two (ormore) functions
- Reverse Chain Rule (RCR) refers to int egrating by inspection
- spotting that chain rule would be used in the reverse (differentiating) process

How dol know when to use reverse chain rule?

- Reverse chain rule is used when we have the product of a composite function and the derivative of its second function
- Integration is trickier than differentiation; many of the shortcuts do not work
- For example, in general $\int e^{f(x)} d x \neq \frac{1}{f^{\prime}(x)} e^{f(x)}$
- However, this result is true if $f(x)$ is linear $(a x+b)$
- Formally, in function notation, reverse chainrule is used forintegrands of the form

$$
I=\int g^{\prime}(x) f(g(x)) \mathrm{d} x
$$

- this does not have to be strictly true, but 'algebraically'it should be
- if coefficients do not match 'adjust and compensate' can be used
- e.g. $5 x^{2}$ is not quite the derivative of $4 x^{3}$
- the algebraic part $\left(X^{2}\right)$ is 'correct'
- but the coefficient 5 is 'wrong'
- use 'adjust and compensate'to 'correct'it
- A particularly useful instance of reverse chain rule to recognise is

Copyright $\quad I=\int \frac{f^{\prime}(x)}{f(x)} \mathrm{d} x=\ln |f(x)|+c$

- i.e. the numerator is (almost) the derivative of the denominator
- 'adjust and compensate' mayneed to be used to deal with any coefficients
- e.g.

$$
I=\int \frac{x^{2}+1}{x^{3}+3 x} \mathrm{~d} x=\frac{1}{3} \int 3 \frac{x^{2}+1}{x^{3}+3 x} \mathrm{~d} x=\frac{1}{3} \int \frac{3 x^{2}+3}{x^{3}+3 x} \mathrm{~d} x=\frac{1}{3} \ln \left|x^{3}+3 x\right|+c
$$

How dolintegrate using reverse chain rule?

- If the product can be identified, the int egration can be done "byinspection"
- there maybe some "adjusting and compensating" to do
- Notice a lot of the "adjust and compensate method" happens mentally
- this is indicated in the steps below by quote marks

STEP 1

Spot the 'main' function
e.g. $I=\int x\left(5 x^{2}-2\right)^{6} \mathrm{~d} x$
"the main function is $(\ldots)^{6}$ which would come from $(\ldots)^{7 \text { " }}$

STEP 2
'Adjust' and 'compensate' any coefficients required in the integral
e.g. " (... $)^{7}$ would differentiate to $7(\ldots)^{6 "}$
"chain rule says multiply by the derivative of $5 x^{2}-2$, which is $10 x$ "
"there is no ' 7 ' or ' 10 ' in the integrand so adjust and compensate"
$I=\frac{1}{7} \times \frac{1}{10} \times \int 7 \times 10 \times x\left(5 x^{2}-2\right)^{6} \mathrm{~d} X$

STEP 3

Integrate and simplify
e.g. $I=\frac{1}{7} \times \frac{1}{10} \times\left(5 x^{2}-2\right)^{7}+c$
$I=\frac{1}{70}\left(5 x^{2}-2\right)^{7}+c$

- Differentiation can be used as a means of checking the final answer
- After some practice, you may find Step 2 is not needed
- Do use it on more awkward questions (negatives and fractions!)
- If the product cannot easily be id entified, use substitution

© Exam Tip

- Before the exam, practice this until you are confident with the pattern and do not need to worry about the formula or steps anymore
- This will save time in the exam
- You can always check your work by differentiating, if you have time

Worked example
A curve has the gradient function $f^{\prime}(x)=5 x^{2} \sin \left(2 x^{3}\right)$.
Given that the curve passes through the point $(0,1)$, find an expression for $\mathrm{f}(x)$.

$$
\begin{aligned}
& f(x)=\int 5 x^{2} \sin \left(2 x^{3}\right) d x \\
& f(x)=5 \int x^{2} \sin \left(2 x^{3}\right) d x \quad \text { Take } 5 \text { out as a factor }
\end{aligned}
$$

This is a product, almost in the form $g^{\prime}(x) f(g(x))$
STEP I: Spot the 'main' function
"the main function is $\sin (.$.$) which would$
2: 'Adjust and compensate' coefficients " $\cos (\ldots)$ would differentiate to - $\sin (\ldots)$),
0

- $\sum 2 x^{3}$ would differentiate to $6 x^{2} "$

$$
f(x)=5 x-\frac{1}{6} x \int-x 6 \times x^{2} \sin \left(2 x^{3}\right) d x
$$

© 2024 Exam Papers Practice
$\underset{\text { compensate }}{\uparrow \uparrow} \uparrow \uparrow$
STEP 3: Integrate and simplify

$$
f(x)=-\frac{5}{6} \cos \left(2 x^{3}\right)+c
$$

Substitution: Reverse Chain Rule

What is integration by substitution?

- When reverse chain rule is difficult to spot or awkward to use then integration by substitution can be used
- substitution simplifies the integral by defining an alternative variable (usually \boldsymbol{U}) in terms of the original variable (usually \boldsymbol{X})
- everything (including " $\mathrm{d} \boldsymbol{X}$ " and limits for definite integrals) is then substituted which makes the integration much easier

How do lintegrate using substitution?

STEP 1

Id entify the substitution to be used - it will be the second ary function in the composite function

So $g(x)$ in $f(g(x))$ and $u=g(x)$

STEP 2

Differentiate the substitution and rearrange

$$
\frac{\mathrm{d} u}{\mathrm{~d} x} \text { can be treated like a fraction }
$$

(i.e. "multiply by $\mathrm{d} X$ " to get rid of fractions)

STEP 3

Replace all parts of the integral
All \boldsymbol{X} terms should be replaced with equivalent \boldsymbol{U} terms, including $\mathrm{d} \boldsymbol{X}$ If finding a definite integral change the limits from \boldsymbol{X}-values to \boldsymbol{U}-values to o

STEP 4

Integrate and either
substitute \boldsymbol{X} back in
or
evaluate the definte integral using the \boldsymbol{u} limits (either using a GDC or manually)

STEP 5

Find \boldsymbol{C}, the constant of integration, if needed

- For definite integrals, a GDC should be able to process the integral without the need fora substitution
- be clear about whether working is required or not in a question

- Exam Tip

- Use your GDC to check the value of a definite integral, even in cases where working needs to be shown

Exam Papers Practice

Worked example

a) Find the integral

$$
\int \frac{6 x+5}{\left(3 x^{2}+5 x-1\right)^{3}} d x
$$

STEP 1: Identify the substitution
The composite function is $\left(3 x^{2}+5 x-1\right)^{3}$
The secondary function of this is $3 x^{2}+5 x-1$

$$
\therefore \text { Let } u=3 x^{2}+5 x-1
$$

STEP 2: Differentiate u and rearrange

$$
\begin{aligned}
& \frac{d u}{d x}=6 x+5 \\
& \therefore d u=(6 x+5) d x
\end{aligned}
$$

STEP 3: Replace all parts of the integral

$$
\begin{aligned}
I=\int \frac{6 x+5}{\left(3 x^{2}+5 x-1\right)^{2}} d x & =\int \frac{d v}{v^{3}} \\
& =\int v^{-3} d v
\end{aligned}
$$

STEP 4: Integrate and substitute x back in

- 2024 Exam Papers (STEP 5 not needed, evaluating c is not required)

$$
\begin{aligned}
& I=\frac{u^{-2}}{-2}+c \\
& I=-\frac{1}{2}\left(3 x^{2}+5 x-1\right)^{-2}+c \\
& \therefore I=\frac{-1}{2\left(3 x^{2}+5 x-1\right)^{2}}+c
\end{aligned}
$$

b) Evaluate the integral

$$
\int_{1}^{2} \frac{6 x+5}{\left(3 x^{2}+5 x-1\right)^{3}} d x
$$

Exam Papers Practice
giving your answer as an exact fraction in its simplest terms.
Note that you could use your GOC for this part
Certainly use it to check your answer!
From STEP 3 above, $I=\int_{x=1}^{x=2} u^{-3} d u$
Change limits too, $x=1, \quad 0=3(1)^{2}+5(1)-1=7$
$x=2, \quad v=3(2)^{2}+5(2)-1=21$
STEP 14: Integrate and evaluate

$$
I=\left[-\frac{1}{2} v^{-2}\right]_{7}^{21}=\left[-\frac{1}{2}(21)^{-2}\right]-\left[-\frac{1}{2}(7)^{-2}\right]
$$

$$
\therefore I=\frac{4}{441}
$$

5.4.3 Further Applications of Integration

Negative Integrals

- The area und er a curve may appearfully orpartially under the x-axis
- This o ccurs when the function $f(x)$ takes negative values within the bo und aries of the area
- The definite int egrals used to find such areas
- will be negative if the area is fully under the \boldsymbol{X}-axis
- possibly negative if the area is partially under the \boldsymbol{X}-axis
- this occurs if the negative area(s) is/are greater than the positive area(s), their sum will be negative

How dol find the area under a curve when the curve is fully under the x-axis?

STEP 1

Write the expression for the definite integral to find the area as usual
This may involve finding the lower and upper limits from a graph sketch or GDC and f(x) may need to be rewritten in an integrable form

STEP 2

The answerto the definite integral will be negative
Area must always be positive so take the modulus (absolute value) of it
e.g. If $I=-36$ then the area would be 36 (square units)

How do Ifind the area under a curve when all, or some, of the curve is belowthe x axis?

- Use the modulus function
- The modulus is also called the absolute value (Abs)
- Essentially the modulus function makes all function values positive
- Graphically, this means anynegative areas are reflected in the \boldsymbol{X}-axis

- lookforakeyoron-screen icon that says 'Abs' (absolute value)

$$
A=\int_{a}^{b}|y| \mathrm{d} x
$$

- This is given in the formula booklet

STEP 1
If a diagram is not given, use a GDC to draw the graph of $y=f(x)$
If not identifiable from the question, use the graph to find the limits \boldsymbol{a} and b

STEP 2

Write down the definite integral needed to find the required area Remember to include the modulus ($|\ldots|$) symbols around the function Use the GDC to evaluate it

- Exam Tip

- If no diagram is provided, quickly sketch one so that you can see where the curve is above and below the x - axis and split up your integrals accordingly
- You should use your GDC to do this

Worked example

The diagram below shows the graph of $y=f(x)$ where $f(x)=(x+4)(x-1)(x-5)$.

The region R_{1} is bounded bythe curve $y=f(x)$, the x-axis and the y-axis.
The region R_{2} is bounded bythe curve $y=f(x)$, the x -axis and the line $x=3$.
Find the total area of the shaded regions, R_{1} and R_{2}.

© 2024 Exam Papers Practice

STEP I: Graph given, identify limits

$$
\begin{array}{ll}
a=0 & (y \text {-axis }) \\
b=3 & (\text { line } x=3)
\end{array}
$$

STEP 2: Write down the integral required and use a GDC to evaluate it

$$
A=\int_{0}^{3}|(x+4)(x-1)(x-5)| d x
$$

$$
A=43 \cdot 166666 \ldots
$$

$$
\therefore A=43.2 \text { square units (} 3 \text { s.f.) }
$$

Area Between Curve \& y-axis

What is meant bythe area between a curve and the y-axis?

- The area referred to is the regionbounded by
- the graph of $y=f(x)$
- the y-axis
- the horizontal line $y=a$
a the horizont al line $y=b$
- The exact area can be found by evaluating a definite integral

How do Ifind the area between a curve and the y-axis?

- Use the formula

$$
A=\int_{a}^{b}|x| \mathrm{d} y
$$

- This is given in the formula booklet
- The function is normally given in the form $y=f(x)$
- so will need rearranging into the form $x=g(y)$
- \boldsymbol{a} and \boldsymbol{b} may not be given directly as could involve the the \boldsymbol{X}-axis $(\boldsymbol{y}=0)$ and/or a ro ot of $x=g(y)$
- use a GDC to plot the curve and find roots as necessary

STEP 1

If a diagram is not given, use a GDC to draw the graph of $y=f(x)$
(or $x=g(y)$ if already in that form)
If not identifiable from the question, use the graph to find the limits \boldsymbol{a} and b

STEP 2

If needed, rearrange $y=f(x)$ into the form $x=g(y)$

STEP 3

Write down the definite integral needed to find the required area
Use a GDC to evaluate it
A GDC is likely to require the function written with ' \boldsymbol{X} ' as the variable (not ' \boldsymbol{Y}^{\prime})
Remember to include the modulus ($|\ldots|$) symbols around the function
Modulus may be called 'Absolute value (Abs)' on some GDCs

- In trickier problems some (or all) of the area may be 'negative'
- this would be any area that is to the left of the \boldsymbol{y}-axis (negative \boldsymbol{X} values)
- $|x|$ makes such areas 'positive' by reflect ing them in the y-axis
- a GDC will apply $|\boldsymbol{X}|$ auto matic ally as long as the modulus ($|\ldots|$)symbols are included

O Exam Tip

- If no diagram is provided, quicklysketch one so that you can see where the curve is to the left and right of the y-axis and split up yo ur integrals accordingly
- You should use your GDC to do this

Worked example

Find the area enclosed bythe curve with equation $y=2+\sqrt{x+4}$, the y-axis and the ho rizontal lines with equations $y=3$ and $y=6$.

STEP 1: GDC plot shows partially negative area; limits given in question

STEP 2: Rearrange $y=f(x)$ into $x=g(y)$

$$
\begin{aligned}
& y=2+\sqrt{x+4} \\
& x=(y-2)^{2}-4=y^{2}-4 y+4-4 \\
& x=y^{2}-4 y
\end{aligned}
$$

STEP 3: Write down integral; use GOC to evaluate

$$
\begin{aligned}
& A=\int_{3}^{6}\left|y^{2}-4 y\right| d y \quad\left(\text { Type this as } \int_{3}^{6}\left|x^{2}-4 x\right| d x \text { on a } G O C\right) \\
& A=12.333333 \ldots \\
& \therefore A=12.3 \text { square units }\left(3 \text { s.f.) } \quad \begin{array}{l}
\text { might be 'Abs' } \\
\text { on a God }
\end{array}\right.
\end{aligned}
$$

Copyright
© 2024 Exam Papers Practice
The exact answer is $37 / 3$ but our GDC was not able to recognise this, despite us trying to use the exact-approximate button (S-D). This may vary between makes/models and will be due to the algorithm used to calculate integrals.

Area Between a Curve and a Line

- Areas who se boundaries include a curve and a (non-vertical) straight line can be found using integration
- For an area under a curve a definite integral will be needed
- For an area under a line the shape formed will be a trapezium or triangle
- basic area formulae can be used rather than a d efinite integral
- using a GDC, one metho dis not particularly trickier than the other
- The total area required could be the sum or difference of the area under the curve and the area under the line

How dol find the area bet ween a curve and a line?

STEP 1

If a diagram is not given, use a GDC to draw the graphs of the curve and line and identify the area to be found

STEP 2

Use a GDC to find the root(s) of the curve, the root of the line, and the x-coordinates of any intersections between the curve and the line.

STEP 3
Use the graph to determine whether areas will need ad ding or subtracting
Deduce the limits and thus the definite integral(s) to find the area(s) under the curve and the line
Use a GDC to calculate the area under the curve

$$
\int_{a}^{b}|y| \mathrm{d} x
$$

Remember to include the modulus (|...|) symbols around the function
Use a GDC to calculate the area under the line - this could be ano ther definite integral or

$$
A=\frac{1}{2} b h \text { for a triangle or } A=\frac{1}{2} h(a+b) \text { for a trapezium }
$$

STEP 4
Add or subtract areas accordingly to o btain a final answer

- Exam Tip

- Add information to anydiagram provided
- Add axes intercepts, as well as intercepts between lines and curves
- Mark and shade the area you're trying to find
- If no diagram is provided, use your GDC to graph one and if you have time copythe sketch into your working

(. Worked example

The region R is bounded bythe curve with equation $y=10 x-x^{2}-16$ and the line with equation $y=8-x$.
R lies entirely in the first quadrant.
Find the area of the region R.

STEP I: Sketch the graph from GDC plot; identify area required

STEP 2: Only intersections are required (use GDC)
Points of intersection are
$(3,5)$ and $(8,0)$
STEP 3: Determine + $/$-, limits, integrals, etc
Area under curve $=\int_{3}^{8}\left|10 x-x^{2}-16\right| d x=\frac{100}{3}$
Area under line $=\frac{1}{2} \times(8-3) \times 5=\frac{25}{2}$
\therefore Area of $R=\frac{100}{3}-\frac{25}{2}=\frac{125}{6}$
Area of $R=\frac{125}{6}$ square units $\quad(20.8$ 3 sf. $)$

If finding the area of R directly from your GDC
Copyright you may find it will not give an exact answer In this case an exact answer was not demanded so either $125 / 6$ or 20.8 (3 sf.) is acceptable

Definite Integrals

What is a definite integral?

$$
\int_{a}^{b} f(x) d x=[F(x)]_{a}^{b}=F(b)-F(a)
$$

- This is known as the Fundamental Theorem of Calculus
- \boldsymbol{a} and \boldsymbol{b} are called limits
- ais the lowerlimit
- b is the upper limit
- $\mathrm{f}(x)$ is the integrand
- $\mathrm{F}(x)$ is an antiderivative of $\mathrm{f}(x)$
- The constant of integration (" $+c^{\prime \prime}$) is not needed in definite integration
- " $+c$ " would appearalongside both $\mathrm{F}(a)$ and $\mathrm{F}(b)$
- subtracting means the " $+C$ "'s cancel

How dolfind definite integrals analytically (manually)?

STEP 1
Give the integral a name to s ave having to rewrite the whole integral every time If need be, rewrite the integral into an integrable form

$$
I=\int_{a}^{b} \mathrm{f}(x) \mathrm{d} x
$$

STEP 2
Integrate without applying the limits; you will not need " $+c$ "
Notation: use square brackets [] with limits placed at the end bracket

STEP 3
Substitute the limits into the function and evaluate

- Exam Tip

- If a question does not state that you can use your GDC then you must show all of your working clearly, however it is always good practice to check you answer by using your GDC if you have it in the exam

Exam Papers Practice

Worked example

a) Show that

$$
\int_{2}^{4} 3 x\left(x^{2}-2\right) \mathrm{d} x=144
$$

STEP 1: Name the integral and rewrite into an integratable form

$$
I=\int_{2}^{4}\left(3 x^{3}-6 x\right) d x
$$

STEP 2: Integrate

$$
I=\left[\frac{3}{4} x^{4}-3 x^{2}\right]_{2}^{4}
$$

STEP 3: Evaluate

$$
\begin{aligned}
& I=\left[\frac{3}{4}(4)^{4}-3(4)^{2}\right]-\left[\frac{3}{4}(2)^{4}-3(2)^{2}\right] \\
& I=144-0 \\
& \therefore \int_{2}^{4} 3 x\left(x^{2}-2\right)=144
\end{aligned}
$$

b) Use your GDC to evaluate
© 2024 Exam Papers Practice

$$
\int_{0}^{1} 3 e^{x^{2} \sin x} d x
$$

giving your answerto three signific ant figures.
Using GDC,

$$
\begin{gathered}
\int_{0}^{1} 3 e^{x^{2} \sin x} d x=3.872957 \ldots \\
\therefore \int_{0}^{1} 3 e^{x^{2} \sin x} d x=3.87 \quad \text { (3 sf.) }
\end{gathered}
$$

5.4.4 Volumes of Re volution

Volumes of Revolution Around x-axis

What is a volume of revolution around the x -axis?

- A solid of revolution is formed when an area bounded by a function $y=f(x)$
(and otherboundary equations) is rotated 2π radians $\left(360^{\circ}\right)$ aro und the X-axis
- The volume of revolution is the volume of this solid
- Be careful - the 'front' and 'back' of this solid are flat
- theywere created from straight (vertical) lines
- 3Dsketches can be misleading

How do Isolve problems involving the volume of revolution around the x-axis?

- Use the formula

$$
V=\pi \int_{a}^{b} y^{2} \mathrm{~d} x
$$

- This is given in the formula booklet
- y is a functionof X
- $X=a$ and $x=b$ are the equations of the (vertical) lines bounding the area
- If $X=a$ and $x=b$ are not stated in a question, the boundaries could involve the y-axis ($x=0$) and/ora root of $y=f(x)$
- Use a GDC to plot the curve, sketchit and highlight the area to help
- Visualising the solid created is helpful
- Trysketching some functions and their solids of revolution to help STEP 1
If a diagram is not given, use a GDC to draw the graph of $y=f(x)$
If not identifiable from the question, use the graph to find the limits a and b
STEP 2
Use a GDC and the formula to evaluate the integral
Thus find the volume of revolution

(-) Exam Tip

- Functions involved can be quite complic ated so type them into your GDC carefully
- Whether a diagram is given or not, using your GDC to plot the curve, limits, etc (where possible) can help you to visualise and make pro gress with problems

Worked example

Find the volume of the solid of revolution formed by rotating the region bounded by the graph of $y=\sqrt{3 x^{2}+2}$, the coordinate axes and the line $x=3$ by 2π radians around the x-axis. Give your answer as an exact multiple of π.

STEP 1: Use GDC to plot $y=f(x)$; identify limits
From GDC.

STEP 2: Use GDC and formula, find volume

$$
\begin{aligned}
& V=\pi \int_{0}^{3}\left(\sqrt{3 x^{2}+2}\right)^{2} d x=33 \pi \\
& \therefore V=33 \pi \text { cubic units } \quad(1043 \text { sf. })
\end{aligned}
$$

Depending on make/model of your GDC you
may or may not get an exact answer.
if you doit, try evaluating the integral
without π (but remember to put it back for your written answer!

Volumes of Revolution Around y-axis

What is a volume of revolution around the y-axis?

- Very similar to above, this is a solid of revolution which is formed when an area bounded bya function $y=f(x)$ (and other boundary equations) is rotated 2π radians $\left(360^{\circ}\right)$ aro und the y axis
- The volume of revolution is the volume of this solid

How do Isolve problems involving the volume of revolution around \mathbf{y}-axis?

- Use the formula

$$
V=\pi \int_{a}^{b} x^{2} \mathrm{~d} y
$$

- This is given in the formula booklet
- X is a function of y
- the function is usually given in the form $y=f(x)$
- this will need rearranging into the form $x=g(y)$
- $y=a$ and $y=b$ are the equations of the (horizontal) lines bounding the area
- If $y=a$ and $y=b$ are not stated in the question, the boundaries could involve the \boldsymbol{X} axis $(y=0)$ and/ora root of $x=g(y)$
- Use a GDC to plot the curve, sketchit and highlight the area to help
- Visualis ing the solid created is helpful
- Trysketching some functions and their solids of revolution to help

STEP 1

If a diagram is not given, use a GDC to draw the graph of $y=f(x)$
(or $X=g(y)$ if already in that form)
If not identifiable from the question use the graph to find the limits a and b
STEP 2
If needed, rearrange $y=f(x)$ into the form $x=g(y)$
STEP 3
Use a GDC and the formula to evaluate the integral
A GDC will likely require the function written with ' \boldsymbol{X} ' as the variable (not ' \boldsymbol{y}^{\prime})
Thus find the volume of revolution

- Exam Tip

- Functions involved can be quite complic ated so type them into your GDC carefully
- Whether a diagram is given ornot, using your GDC to plot the curve, limits, etc (where possible) can help you to visualise and make pro gress with problems

Worked example

Find the volume of the solid of revolution formed by rotating the region bounded by the graph of $y=x^{3}+8$ and the coordinate axes by 2π radians around the y-axis. Give your answer to three significant figures.

STEP I: Use $G D$ to plot $y=f(x)$; identify limits
From GDC.

STEP 2: Rearrange $y=f(x)$ into $x=g(y)$

$$
\begin{aligned}
& y=x^{3}+8 \\
& x^{3}=y-8
\end{aligned}
$$

Copyright

$$
x=\sqrt[3]{y-8}
$$

STEP 3: Use GOC and formula, find volume

$$
\begin{aligned}
& V=\pi \int_{0}^{8}(\sqrt[3]{y-8})^{2} d y \quad\left(\text { Type as }(\sqrt[3]{x-8})^{2} \text { on } G D C\right) \\
& V=60.318578 \ldots
\end{aligned}
$$

$$
\therefore \mathrm{V}=60.3 \text { cubic units (} 3 \text { s.f.) }
$$

