
5.4 Further Integration

AA SL



5.4.1 Integrating Special Functions

Integrating Trig Functions

How do I int egrat e sin and cos?

The antiderivatives  fo r sine  and co sine  are

∫ sin x dx= − cos x+c

∫cos x dx= sin x+c

where c is the co nstant  o f integratio n

These are given in the f o rmula bo o klet

Fo r the linear functio n ax+b , where a and b are co nstants,

∫ sin (ax+b ) dx= −
1
a cos (ax+b ) +c

∫cos (ax+b ) dx=
1
a sin (ax+b ) +c

Fo r calculus  with trigo no metric  functio ns angles must  be measured  in radians

Ensure yo u kno w ho w to  change the angle mo de o n yo ur GDC
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i)

ii)

iii)

a)

b)

Worked example

Find, in the fo rm F(x)+c , an expressio n fo r each integral

∫cos x dx

∫3sin⎛
⎜

⎝
2x+ π3

⎞
⎟

⎠
dx

∫(2sin(4x)−3cos(2x) ) dx

The graph o f y=F(x)+c fo r questio n (a) part (ii) passes thro ugh the po int with

co o rdinates
⎛
⎜
⎜

⎝

π
3 ,

5
2

⎞
⎟
⎟

⎠
.
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Find the value o f c .

Integrating e^x & 1/x

How do I int egrat e exponent ials and 1/x?

The antiderivatives  invo lving ex and ln x are

∫ ex dx= ex +c

∫ 1
x dx= ln 



x 



+c

where c is the co nstant  o f integratio n

These are given in the f o rmula bo o klet

Fo r the linear functio n (ax+b ) , where a and b are co nstants,

∫eax+b dx=
1
a eax+b +c

∫ 1
ax+b dx=

1
a ln 



ax+b 



+c

It fo llo ws fro m the last result that

∫ a
ax+b dx= ln 



ax+b 



+c

which can be deduced using Reverse Chain Rule

With ln, it can be useful to  write the co nstant o f integratio n, c , as a lo garithm

using the laws o f lo garithms, the answer can be written as a single term

∫ 1
x dx= ln 



x 



+ ln k= ln k 



x 




where k is a co nstant

This is similar to  the special case o f di�erentiating ln (ax+b) when b=0
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Exam T ip

Make sure yo u have a co py o f the fo rmula bo o klet during revisio n but do n't try to  remember

everything in the fo rmula bo o klet

Ho wever, do  be familiar with the layo ut  o f the fo rmula bo o klet

Yo u’ll be able to  quickly lo cate whatever yo u are after

Yo u do  no t want to  be searching every line o f every page!

Fo r fo rmulae yo u think yo u have remembered, use the bo o klet to  do uble-check

Worked example

A curve has the gradient functio n f '(x)=
3

3x+2 +e4−x .

Given the exact value o f f (1)  is ln 10−e3  find an expressio n fo r f (x) .
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5.4.2 Techniques of Integration

Integrating Composite Functions (ax+b)

What  is a composit e f unct ion?

A co mpo site f unctio n invo lves o ne functio n being applied after ano ther

A co mpo site functio n may be described as a “functio n o f a functio n”

This Revisio n No te fo cuses o n o ne o f the functio ns being linear – i.e. o f the fo rm ax+b

How do I int egrat e linear (ax+b) f unct ions?

A linear f unctio n (o f x ) is o f the fo rm ax+b
The special cases fo r trigo no metric f unctio ns  and expo nential and lo garithm f unctio ns  are

∫sin(ax+b) dx=−
1
a cos(ax+b)+c

∫cos(ax+b) dx=
1
a sin(ax+b)+c

∫eax+b dx=
1
a eax+b+c

∫ 1
ax+b dx=

1
a ln








ax+b +c
There is o ne mo re special case

∫(ax+b)
n dx=

1
a (n+1)

(ax+b)
n+1+c  where  n∈ℚ, n≠−1

c , in all cases, is the co nstant  o f integratio n

All the abo ve can be deduced using reverse chain rule

Ho wever, spo tting them can make so lutio ns mo re efficient

Exam T ip

Altho ugh the specific fo rmulae in this revisio n no te are NOT  in the f o rmula bo o klet

almo st all o f the info rmatio n yo u will need to  apply reverse chain rule is pro vided

make sure yo u have the fo rmula bo o klet o pen at the right page(s) and practice using it
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a)      ∫3(7−2x)

5
3 dx

b)      ∫ 1
2 cos(3x−2) dx

Worked example

Find the fo llo wing integrals
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Reverse Chain Rule

What  is reverse chain rule?

The Chain Rule  is a way o f differentiating two  (o r mo re) functio ns

Reverse Chain Rule  (RCR) refers to  integrating by inspectio n

spo tting that chain rule wo uld be used in the reverse (differentiating) pro cess

How do I know when t o use reverse chain rule?

Reverse chain rule  is used when we have the pro duct  o f a co mpo site f unctio n and the

derivative  o f its seco nd f unctio n

Integratio n is trickier than differentiatio n; many o f the sho rtcuts do  no t wo rk

Fo r example, in general ∫ef (x ) dx≠
1

f '(x)

ef (x )

Ho wever, this result is true  if f (x)  is linear (ax+b)

Fo rmally, in f unctio n no tatio n, reverse chain rule  is used fo r integrands  o f the fo rm

I=∫g'(x)f (g (x) ) dx

this do es no t have to  be strictly true, but ‘algebraically’ it sho uld be

if co efficients  do  no t match ‘adjust  and co mpensate’ can be used

e.g.  5x2  is no t quite the derivative o f 4x3

the algebraic part (x2
)  is 'correct'

but the co efficient 5 is ‘wrong’

use ‘adjust  and co mpensate’ to  ‘correct’ it

A particularly useful instance o f reverse chain rule to  reco gnise is

I=∫ f '(x)

f (x)

dx= ln |f (x) | +c

i.e.  the numerato r is (almo st) the derivative  o f the deno minato r

'adjust  and co mpensate' may need to  be used to  deal with any co efficients

e.g.  

I=∫ x2+1
x3+3x dx=

1
3 ∫3

x2+1
x3+3x dx=

1
3 ∫

3x2+3
x3+3x dx=

1
3 ln |x3+3x |+c

How do I int egrat e using reverse chain rule?

If the pro duct can be identified, the integratio n can be do ne “by inspectio n”

there may be so me “adjusting and co mpensating” to  do

No tice a lo t o f the "adjust  and co mpensate  metho d” happens mentally
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this is indicated in the steps belo w by quo te marks

ST EP 1

Spo t the ‘main’ functio n

e.g.  I=∫x (5x2−2)
6 dx

"the main functio n is ( . . . )
6 which wo uld co me fro m ( . . . )

7”

ST EP 2

‘Adjust’ and ‘co mpensate’ any co efficients required in the integral

e.g.  " ( . . . )
7 wo uld differentiate to  7( . . . )

6 "

“chain rule says multiply by the derivative o f 5x2−2 , which is 10x ”

“there is no  '7' o r ‘10’ in the integrand so  adjust and co mpensate”

I=
1
7 ×

1
10 ×∫7×10×x (5x2−2)

6 dx

ST EP 3

Integrate  and simplify

e.g.  I=
1
7 ×

1
10 × (5x2−2)

7+c

I=
1
70 (5x2−2)

7+c

Differentiatio n can be used as a means o f checking the final answer

After so me practice, yo u may find Step 2 is no t needed

Do  use it o n mo re awkward questio ns (negatives and fractio ns!)

If the pro duct canno t  easily be identified, use substitutio n

Exam T ip

Befo re the exam, practice this until yo u are co nfident with the pattern and do  no t need to

wo rry abo ut the fo rmula o r steps anymo re

This will save time in the exam

Yo u can always check yo ur wo rk by differentiating, if yo u have time
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Worked example

A curve has the gradient functio n f '(x)=5x2sin(2x3
) .

Given that the curve passes thro ugh the po int (0, 1) , find an expressio n fo r f (x) .
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Substitution: Reverse Chain Rule

What  is int egrat ion by subst it ut ion?

When reverse chain rule is difficult to  spo t o r awkward to  use then integratio n by substitutio n

can be used

substitutio n simplifies the integral by defining an alternative variable (usually u ) in terms o f

the o riginal variable (usually x )

everything (including “dx ” and limits  fo r definite integrals) is then substituted which makes

the integratio n much easier

How do I int egrat e using subst it ut ion?

ST EP 1

Identify the substitutio n to  be used – it will be the seco ndary functio n in the co mpo site

functio n

So g (x)  in f (g (x) )  and u=g (x)

ST EP 2

Differentiate the substitutio n and rearrange

du
dx can be treated like a fractio n

(i.e. “multiply by dx” to  get rid o f fractio ns)

ST EP 3

Replace all parts o f the integral

All x  terms sho uld be replaced with equivalent u terms, including dx
If finding a definite integral change the limits fro m x -values to u -values to o

ST EP 4

Integrate and either

substitute x  back in

o r

evaluate the definte integral using the u  limits (either using a GDC o r manually)

ST EP 5

Find c , the co nstant o f integratio n, if needed

Fo r de�nite integrals, a GDC sho uld be able to  pro cess the integral witho ut the need fo r a

substitutio n

be clear abo ut whether wo rking is required o r no t in a questio n

Exam T ip

Use yo ur GDC to  check the value o f a de�nite integral, even in cases where wo rking needs to

be sho wn
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a)

Worked example

Find the integral

∫ 6x+5
(3x2+5x−1)

3 dx

b) Evaluate the integral

∫
1

2 6x+5
(3x2+5x−1)

3 dx
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giving yo ur answer as an exact fractio n in its simplest terms.
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5.4.3 Definite Integrals

Definite Integrals

What  is a definit e int egral?

∫
a

b
f (x ) dx= ⎡

⎢
⎣
F (x )

⎤
⎥
⎦ a
b=F (b ) −F (a )

This is kno wn as the Fundamental T heo rem o f Calculus

a and b are called limits

a is the lo wer limit

b is the upper limit

f (x) is the integrand

F(x) is an antiderivative  o f f (x)

The co nstant  o f integratio n (“+c”) is no t needed in definite integratio n

“+c” wo uld appear alo ngside bo th F(a) and F(b)

subtracting means the “+c”’s cancel

How do I find definit e int egrals analyt ically (manually)?

STEP 1

Give the integral a name to  save having to  rewrite the who le integral every time

If need be, rewrite the integral into  an integrable fo rm

I=∫
a

b
f (x) dx

STEP 2

Integrate witho ut applying the limits; yo u will no t need “+c”

No tatio n: use square brackets [ ] with limits placed at the end bracket

STEP 3

Substitute the limits into  the functio n and evaluate

Exam T ip

If a questio n do es no t state that yo u can use yo ur GDC then yo u must sho w all o f yo ur

wo rking clearly, ho wever it is always go o d practice to  check yo u answer by using yo ur GDC if

yo u have it in the exam
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a)

b)

Worked example

Sho w that

∫
2

4
3x (x2−2) dx=144

Use yo ur GDC to  evaluate

∫
0

1
3ex 2sin x dx

giving yo ur answer to  three significant figures.
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Properties of Definite Integrals

Fundament al T heorem of  Calculus

∫
a

b
f (x ) dx= ⎡

⎢
⎣
F (x )

⎤
⎥
⎦ a
b=F (b ) −F (a )

Fo rmally,

f (x)  is co ntinuo us  in the interval a≤x≤b
F(x) is an antiderivative  o f f (x)

What  are t he propert ies of  definit e int egrals?

So me o f these have been enco untered already and so me may seem o bvio us …

taking co nstant  facto rs o utside the integral

∫
a

b
kf (x) dx=k∫

a

b
f (x) dx  where k is a co nstant

useful when fractio nal and/o r negative values invo lved

integrating term by term

∫
a

b
[f (x)+g(x)] dx=∫

a

b
f (x) dx+∫

a

b
g(x) dx

the abo ve wo rks fo r subtractio n o f terms/functio ns to o

equal upper and lo wer limits

∫
a

a
f (x) dx=0

o n evaluating, this wo uld be a value, subtract itself !

swapping limits gives the same, but negative, result

∫
a

b
f (x) dx=−∫

b

a
f (x) dx

co mpare 8 subtract 5 say, with 5 subtract 8 …

splitting the interval

∫
a

b
f (x) dx=∫

a

c
f (x) dx+∫

c

b
f (x) dx  where a≤c≤b

this is particularly useful fo r areas under multiple curves o r areas under the x -axis

ho riz o ntal translatio ns

∫
a

b
f (x) dx=∫

a−k

b−k
f (x+k) dx  where k is a co nstant

the graph o f y= f (x±k) is a ho riz o ntal translatio n o f the graph o f y= f (x)

(f (x+k)  translates left, f (x−k)  translates right)

Exam T ip

Learning the pro perties o f de�nite integrals can help to  save time in the exam
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i)

ii)

i)

ii)

a)

b)

Worked example

f (x)  is a co ntinuo us functio n in the interval 5≤x≤15 .

It is kno wn that ∫
5

10
f (x) dx=12 and that ∫

10

15
f (x) dx=5.

Write do wn the values o f

∫
7

7
f (x) dx

∫
10

5
f (x) dx

Find the values o f

∫
5

15
f (x) dx

∫
5

10
6f (x+5) dx
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5.4.4 Further Applications of Integration

Negative Integrals

The area under a curve may appear f ully  o r partially  under the x-axis

This o ccurs when the functio n f (x)  takes negative  values within the bo undaries o f the area

The definite integrals  used to  find such areas

will be negative  if the area is f ully  under the x -axis

po ssibly negative  if the area is partially  under the x -axis

this o ccurs if the negative area(s) is/are greater than the po sitive area(s), their sum will be

negative

When using a GDC use the mo dulus (abso lute value) functio n so  that all definite integrals have a

po sitive value

A=∫
a

b








y dx

This is given in the f o rmula bo o klet

How do I find t he area under a curve when t he curve is f ully under t he x-axis?

ST EP 1

Write the expressio n fo r the definite integral to  find the area as usual

This may invo lve finding the lo wer and upper limits fro m a graph sketch o r GDC and f(x) may

need to  be rewritten in an integrable fo rm

ST EP 2

The answer to  the definite integral will be negative
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Area must always be po sitive so  take the mo dulus (abso lute value) o f it

e.g. If I=−36 then the area wo uld be 36 (square units)

How do I find t he area under a curve when t he curve is part ially under t he x-axis?

Fo r questio ns that allo w the use o f a GDC yo u can still use

A=∫
a

c








f (x) dx

To  find the area analytically (manually) use the fo llo wing metho d

ST EP 1

Split the area into  parts - the area(s) that are abo ve the x-axis and the area(s) that are belo w the

x-axis

ST EP 2

Write the expressio n fo r the definite integral fo r each part (give each part a name, I , I , etc)

This may invo lve finding the lo wer and upper limits o f each part fro m a graph sketch o r a GDC,

finding the ro o ts o f the functio n (i.e. where f (x)=0) and rewriting f (x)  in an integrable fo rm

ST EP 3

Find the value o f each definite integral separately

ST EP 4

Find the area by summing the mo dulus (abso lute values) o f each integral

(Mathematically this wo uld be written A= 









I1 +










I2 +










I3 + . . . )         

1 2

Exam T ip

If no  diagram is pro vided, quickly sketch o ne so  that yo u can see where the curve is abo ve

and belo w the x - axis and split up yo ur integrals acco rdingly
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a)

b)

Worked example

The diagram belo w sho ws the graph o f y= f (x)  where f (x)= (x+4) (x−1) (x−5) .

The regio n R1 is bo unded by the curve y= f (x) , the x -axis and the y -axis.

The regio n R2 is bo unded by the curve y= f (x) , the x-axis and the line x=3.

Determine the co o rdinates o f the po int labelled P .
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i)

ii)

c) Find the exact to tal area o f the shaded regio ns, R1  and R2 .

Find a definite integral that wo uld help find the area o f the shaded regio n R2
and briefly explain why this wo uld no t  give the area o f the regio n R2 .

Find the exact area o f the shaded regio n R2 .
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Area Between a Curve and a Line

Areas  who se bo undaries include a curve  and a (no n-vertical) straight line  can be fo und using

integratio n

Fo r an area under a curve  a definite integral will be needed

Fo r an area under a line  the shape fo rmed will be a trapez ium o r triangle

basic area f o rmulae  can be used rather than a definite integral

(altho ugh a definite integral wo uld still wo rk)

The area required co uld be the sum o r difference  o f areas under the curve and line

Page 22 of 27
For more help visit our website www.exampaperspractice.co.uk



How do I find t he area bet ween a curve and a line?

ST EP 1

If no t given, sketch the graphs o f the curve and line o n the same diagram

Use a GDC to  help with this step

ST EP 2

Find the intersectio ns o f the curve and the line

If no  diagram is given this will help identify the area(s) to  be fo und

ST EP 3

Determine whether the area required is the sum o r difference o f the area under the curve and

the area under the line

Calculate the area under a curve using a integral o f the fo rm

∫
a

b
y dx

Calculate the area under a line using either A=
1
2 bh fo r a triangle o r A=

1
2 h (a+b) fo r a

trapez ium (y-co o rdinates will be needed)

ST EP 4

Evaluate the de�nite integrals and �nd their sum o r di�erence as necessary to  o btain the area

required

Exam T ip

Add info rmatio n to  any diagram pro vided

Add axes intercepts, as well as intercepts between lines and curves

Mark and shade the area yo u’re trying to  �nd

If no  diagram is pro vided, sketch o ne!
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i)

ii)

a)

b)

Worked example

The regio n R is bo unded by the curve with equatio n y=10x−x2−16 and the line with

equatio n y=8−x .

R  lies entirely in the first quadrant.

Using yo ur GDC, o r o therwise, sketch the graphs o f the curve and the line o n the same

diagram.

Identify and label the regio n R  o n yo ur sketch and use yo ur GDC to  find the x -

co o rdinates o f the po ints o f intersectio n between the curve and the line.

Write do wn an integral that wo uld find the area o f the regio n R .

Find the area o f the regio n R .
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Area Between 2 Curves

Areas  who se bo undaries include two curves  can be fo und by integratio n

The area between two curves  will be the difference  o f the areas under the two  curves

bo th areas will require a definite integral

Finding po ints o f intersectio n may invo lve a mo re awkward equatio n than so lving fo r a curve

and a line

How do I find t he area bet ween t wo curves?

ST EP 1

If no t given, sketch the graphs o f bo th curves o n the same diagram

Use a GDC to  help with this step

ST EP 2

Find the intersectio ns o f the two  curves

If no  diagram is given this will help identify the area(s) to  be fo und

ST EP 3

Fo r each area (there may o nly be o ne) determine which curve is the ‘upper’ bo undary

Fo r each area, write a definite integral o f the fo rm

∫
a

b
(y1−y2) dx

where y1 is the functio n fo r the ‘upper’ bo undary and y2 is the functio n fo r the ‘lo wer’

bo undary

Be careful when there is mo re than o ne regio n – the ‘upper’ and ‘lo wer’ bo undaries will swap
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ST EP 4

Evaluate the definite integrals and sum them up to  find the to tal area

(Step 3 means no  definite integral will have a negative value)

Exam T ip

If no  diagram is pro vided sketch o ne, even if the curves are no t accurate

Add info rmatio n to  any given diagram as yo u wo rk thro ugh a questio n

Maximise use o f yo ur GDC to  save time and maintain accuracy:

Use it to  sketch the graphs and help yo u visualise the pro blem

Use it to  find definite integrals

Worked example

The diagram belo w sho ws the curves with equatio ns y= f (x)  and y=g (x)  where

f (x)= (x−2) (x−3)
2

g(x)=x2−5x+6

Find the area o f the shaded regio n.
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