5.4 Binary number system part 2

Name:

Class:

Date:

Time:
145 minutes

Marks:
99 marks

Comments:

Q1.
Bit patterns can be interpreted in a number of different ways. A computer word contains the bit pattern 00110100.
(a) What is its decimal value if it represents:
a pure binary integer; \qquad
(b) (i) The ASCII value for the character ' 0 ' (zero) is 48 . What character is represented by 00110100 ?
\qquad
(ii) Name one other standard coding system for coding information expressed in character or text-based form.
\qquad

(i) Describe how a coloured line might be represented.
\qquad
\qquad
\qquad
(ii) Describe how a line would be stored using vector graphics.
\qquad
\qquad

Q2.

The binary pattern 101111100100 could be interpreted in a number of different ways.
(a) State its hexadecimal representation.
\qquad
(b) State its value in denary if it represents an unsigned fixed point number with four bits after the binary point. Use the space below to show your working.

E4d Anesystem stores floa ng peim mumbers in normallyee formuting 2's complement, with an 8-bit mantissa and a 4-bit exponent as follows.
Mantissa Exponent

(i) State the value of 101111100100 in denary if it represents a two's complement floating point number. Use the space below to show your working.
(ii) This floating point number is said to be normalised.

How does the bit pattern indicate that this number is normalised?
\qquad
\qquad

Q3.
(a) A system stores integers in 16 bits. Using binary representation, show the steps of subtracting 6 from 18 , using two's complement.
\qquad
\qquad
\qquad
\qquad
 with a 12-bit mantissa and 4-bit exponent as follows.

Mantissa Exponent

(i) A floating point number is stored in main memory at symbolic address Num1. Complete the table below, showing the contents of the memory location using binary notation and the value in decimal.

Symbolic Address	Hexadecimal Representation	Binary Representation	Decimal Value
Num1	A802		

(ii) Why should floating point numbers be stored in normalised form?
\qquad
\qquad

Q4.
(a) What is the binary representation of 63 ?
\qquad
(b) How many different bit patterns can be represented by an 8 bit word?
\qquad
(c) What is the largest pure binary number that can be stored in an 8 bit byte?
\qquad
(Total 3 marks)

Q5.
The binary pattern 101101110110 can be interpreted in a number of different ways.
(a) State its hexadecimal representation:
(b) State its value in denary if it repres bits after the binary point.
xed point number with four

(c) (i) State its value in denary if it represents a two's complement floating point number with an eight bit mantissa followed by a four bit exponent.
\qquad
\qquad
\qquad
(ii) This floating point number is said to be normalised.

How does the bit pattern indicate that this number is normalised?
\qquad
\qquad
(iii) Why should floating point numbers be stored in normalised form?

Q6.
(a) How many bytes are 1 Kilobyte? \qquad
(b) A computer system uses 2 bytes to store a number.
(i) What is the largest pure binary integer it can store? \qquad

What is the bit pattern if the number 37 is to be stored as
(ii) a pure binary integer?

(c) The ASCII coding system uses seven bits to code a character.
The character digits 0 to 9 are assigneatine decimal number codes 48 to 57 .
An extra bit is used as a parity bit
A computer system uses the mos significant bif (MSB) as a parity bit for each byte
and works with even parity.
(i) What is the bit pattern if the digits 37 are to be stored as characters?

| | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

EXAM PAPERS RRACTICE
\qquad
\qquad
\qquad
(a) The number 0111001010111101 is stored in twos complement notation in 16 bits with the most significant 10 bits representing the mantissa and the least significant 6 bits representing the exponent.
(i) Is this number positive or negative?
(ii) Estimate the magnitude of this number. Circle the correct answer below.

$>2^{32}$	Between 2^{16} and 2^{32}	Between 2^{2} and 2^{-2}	$<2^{-2}$

(b) The number 0110000101001000 is stored in the same format. Convert this number into denary.

Answer \qquad
(c) (i) Give one advantage of fixed point over floating point representation.
(ii) Under what circumstances would fixed point representation be used rather than floating point?

Q8.

A computer design company has produced_a design for an elementary computer. It is to be used to teach students about pachine architecture, machine operations and the design of an instruction set.

The current instruction register has a length of 16 bits.

A machine instruction is 16 bits in length.
The most significant eight bits of a machine instruction denote the machine operation.
The least significant bits denote an operand or the address of an operand.
Main memory stores both instructions and data.
The structure of a machine instruction is as follows.

(a) Define the term instruction set.
\qquad
\qquad
(b) With 6 bits of the operation code reserved to denote basic machine operations, how many basic machine operations may be coded?
\qquad
(Total 2 marks)

Q9.

Bit patterns can be interpreted in a number of different ways.
(a) A computer word contains the bit pattern 00010111.

What is its decimal value if it represents a pure binary integer
\qquad
(b) A computer system uses odd pany. The mostsignificant bit (MSB) is used as a parity bit. The ASCII value for the character '!'is ded al number 33.
(i) What would be the 8-bit bin

- (ii) Asynchronous data transmission is used if one character is sent at a time.

What would be the bit pattern if the character '!' above is sent using asynchronous data transmission?

Q10.
(a) (i) Convert the hexadecimal number BD93 to binary.
\qquad
(ii) The contents of register A is 1011101000000011. These bits are a representation of a number in twos complement, with the leftmost 10 bits as the mantissa and the rightmost 6 bits as the exponent.

Convert this number into decimal. Show your working.
(b) Give two reasons why floating point numbers are normalised.

1. \qquad
\qquad
2. \qquad
\qquad

Q11.

Bit patterns can be interpreted in a number of different ways. A computer word contains the bit pattern 00110110.
(a) What is its decimal value if it represents a pure binary integer

at is the character stored in

(ii) Name one other standard coding system for coding information expressed in EMAA character or text-based form
(c) One method of storing graphics in a computer system is as vector graphics.
(i) Name one other method.
\qquad
(ii) Describe how a black-and-white image would be stored using your method.
\qquad
\qquad
\qquad
\qquad

Q12.
(a) A binary pattern might represent a decimal integer or a decimal real number. In a computing context, give an example of
(i) a decimal integer \qquad
(ii) a decimal real number \qquad
(iii) The binary data 00110111 represents an unsigned real number in fixed point form, with the binary point between bits 1 and 2, e.g. 1101.11. Convert this number into decimal, showing all your working.
(b) Convert the binary data 1011011 00111110-into-he xadecimal.

E) A Give one example of wherenexadecimil numbers are used, and exprainwhytiney
are used here rather than binary numbers.
\qquad
\qquad
\qquad
\qquad
(Total 7 marks)
Q13.
(a) Data can be stored inside a computer system in several different representations. The number 25 is to be stored in a 16-bit word.

What is the bit pattern if the number 25 is to be stored as a pure binary integer

(b) The ASCII code for the character ' 3 ' is the decimal number 51.
(i) What is the ASCII code for the character ' 5 '? \qquad
(ii) If eight bits are used to store one character, what is the bit pattern when the string ' 25 ' is stored in a 16 -bit word?

Q14.

A two byte register holds numbers in floating point form with a 10 bit mantissa and a 6 bit exponent.
(a) Explain the terms:
(i) mantissa;

0110101100000011
(i) Label the mantissa in this data.
(ii) How can you tell if the number is positive or negative?
\qquad
\qquad
(c) Explain, or show, how you would subtract 3 from 5 using two's complement.
\qquad
\qquad
\qquad
\qquad
\qquad
(d) Give one advantage of floating point notation over fixed point notation for storing real numbers.
\qquad
\qquad

Q15.
(a) Bit patterns can be interpreted in a number of different ways. A computer word contains the bit pattern 0101 1001. What is its decimal value if it represents: a pure binary integer; \qquad
(b) A binary pattern in a 16 bit word q as pure binary or BCD, as above, or two ASCHerna nt forms of information, such forms of information, excluding those given above. ters. Name three different

What would be the result of performing each of the following logical operations?
(a) NOT 01001111
\qquad
(b) 00110000 OR 00000010
\qquad
(c) 11000001 AND 00010011
\qquad
(d) 00000101 XOR 10001110

E旬
 EXAM PAPERS PRACTICE

