5.4 Binary number system part 1

Name:

Class:

Date:

Time:	$\mathbf{4 3 1}$ minutes
Marks:	$\mathbf{3 2 0}$ marks

Comments:

Q1.
(a) Shade one lozenge to indicate which of the unsigned numbers listed in the table has the largest value.

Number base	Number	Largest value (shade one)
Binary	101101001	\bigcirc
Hexadecimal	30 A	\bigcirc
Decimal	396	\bigcirc

(b) This question uses a normalised floating point representation with a 7-bit mantissa and a 5-bit exponent, both stored using two's complement.

The following is a floating point representation of a number:

Mantissa

Exponent

Calculate the decimal equivalent of the number. You must show your working.
\qquad
\qquad
(2)
(Total 3 marks)

Q2.
This question uses a normalised floating point representation with a 7-bit mantissa and a 5 -bit exponent, both stored using two's complement.

Write the normalised floating point representation of the decimal value -608 in the boxes below. You must show your working.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Mantissa

Exponent

Q3.

A particular computer uses a normalised floating point representation with an 8-bit mantissa and a 4-bit exponent, both stored using two's complement.

Four bit patterns that are stored in this computer's memory are listed in Figure 1 and are labelled A, B, C and D. Some of the bit patterns are valid normalised floating point numbers.

Figure 1
A

B

Mantissa

Exponent

Mantissa

Exponent

Mantissa

Exponent
(a) Shade one lozenge to indicate which bit pattern (A-D) in Figure 1 represents a negative normalised value.

(b) Shade one lozenge to indicate which bit pattern (A-D) in Figure 1 represents the smallest positive normalised value.

(c) The following is a floating point representation of a number:

Mantissa

Calculate the decimal equivalent of the number. You must show your working.

Answer

\qquad
(d) Write the normalised floating point representation of the decimal value 58.5 in the boxes below. You must show your working.
\qquad
\qquad
\qquad
\qquad
Answer

Mantissa
Exponent

There can be a loss of precision when a decimal number is stored when using a floating point system.

The closest possible representation of the decimal number 13.8 is shown below.

By converting this bit pattern back into denary it can be seen that the actual number stored is 13.75, not 13.8.
(e) Calculate the absolute error that has occurred.
\qquad
\qquad
Answer \qquad
(f) Calculate the relative error that has occurred. Express your answer as a percentage to two decimal places.
\qquad
\qquad
\qquad

Q4.
The table below is a partially complete representation of the rules for adding together two bit values. The first two columns represent the two bit values to add. The first row has been completed and represents the binary addition rule $0+0=0$. Carry occurs when the answer cannot be stored in one bit.

		Answer	Carry
0	0	0	0
0	1		
1	0		
1	1		

Complete the table to show the Answer and Carry values for the given binary addition rules by filling in the unshaded cells.

Q5.
A particular computer uses a normalised floating point representation with a 7-bit mantissa and a 5-bit exponent, both stored using two's complement.
(a) Four bit patterns that are stored in this computer's memory are listed in the figure below and are labelled with the letters \mathbf{A} to \mathbf{D}. Three of the bit patterns are valid floating point numbers and one is not.

(Total 3 marks)

Complete the table below. In the Correct letter (A-D) column write the appropriate letter from \mathbf{A} to \mathbf{D} to indicate which bit pattern in the figure above matches the description in the Value description column.

Do not use the same letter more than once.

Value description	Correct letter (A-D)
A normalised negative value.	
The largest positive normalised number of the four values.	
A value that is not valid in the representation because it is not normalised.	

(b) This is a floating point representation of a number:

Mantissa

Exponent

Calculate the denary equivalent of the number. Show how you have arrived at your answer.

Working \qquad

(c) This is a floating point representation of a number:

Calculate the denary equivalent of the number. Show how you have arrived at your answer.

Working \qquad
\qquad
\qquad

Answer \qquad
(d) Write the normalised floating point representation of the denary value 3008 in the boxes below. Show how you have arrived at your answer.

Working \qquad
\qquad

Answer

There can be a loss of precision when a denary number is stored using this floating point system.

The closest possible representation of the denary number 12.83 is shown below:

By converting this bit pattern back into denary it can be seen that the actual number stored is 12.75, not 12.83 .
(e) Calculate the absolute error that has occurred.

(f) Calculate the relative error that has occurred.

You must show your working or express your answer as a percentage to four decimal places.

(g) In the context of floating point, explain what overflow is and give an example of a situation which might cause overflow to occur.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Q6.
A particular computer uses a normalised floating point representation with a 7-bit mantissa and a 5 -bit exponent, both stored using two's complement.
(a) In the boxes below, write the most negative value that can be stored using this representation:

Mantissa

Exponent
(b) This is a floating point representation of a number:

Calculate the denary equivalent of the number. Show how you have arrived at your answer.

(c) Write the normalised floating point representation of the denary value $123 / 4$ in the boxes below. Show how you have arrived at your answer.

\qquad
\qquad
\qquad
Answer

Mantissa

Exponent
(d) Floating point numbers are usually stored in normalised form.
(i) State two advantages of using a normalised representation.

Advantage 1 \qquad

Advantage 2 \qquad
\qquad
\qquad
(ii) When a number is stored in normalised form it is always the case that the bits either side of the binary point are different from each other, i.e. if the bit before the binary point is 0 , the bit after it will be 1 and if the bit before it is 1 , the bit after it will be 0 .

Using this information, explain how the 12 bits used to store a floating point number in this question could be used more efficiently, to increase the precision of the numbers which could be represented, without reducing the available range.

(Total 11 marks)
Q7.
(a) What is the decimal equivalent of the hexadecimal number $\mathrm{D6}_{16}$? Show your working.
\qquad
\qquad
\qquad
\qquad
(b) Represent the decimal value 9.375_{10} as an unsigned binary fixed point number, with 4 bits before and 4 bits after the binary point.
\qquad
\qquad
\qquad
\qquad
(c) Represent the decimal value -67 ${ }_{10}$ as an 8-bit two's complement binary integer.
\qquad
\qquad
\qquad
\qquad
(d) A computer represents numbers using 8-bit two's complement binary.

Using this representation perform the calculation:

(e) What problem has resulted from performing the calculation using 8-bit two's

\qquad

Q8.
A particular computer uses a normalised floating point representation with an 8-bit mantissa and a 4-bit exponent, both stored using two's complement.

Four bit patterns that are stored in this computer's memory are listed in the figure below and are labelled A, B, C, D. Three of the bit patterns are valid floating point numbers and one is not.

A	$0 \cdot 1$	0	1	1	1	0	0	1	0	1	0
	Mantissa							Exponent			
B	$0 \bigcirc 0$	0	1	1	0	1	0	0	1	0	1
	Mantissa							Exponent			
C	10	0	0	0	0	0	0	0	1	1	1
	Mantissa							Exponent			
D	10	1	1	1	1	1	1	1	0	0	0
Mantissa								Exponent			

(a) Complete the table below. In the Correct letter (A-D) column shade the appropriate lozenge $\mathbf{A}, \mathbf{B}, \mathbf{C}$ or \mathbf{D} to indicate which bit pattern from above is an example of the type of value described in the Value description column.

Do not use the same letter more than once.

(b) The following is a floating point representation of a number:

0	1	0	1	1	0	0	0

Mantissa

Exponent

Calculate the decimal equivalent of the number. Show how you have arrived at your answer.
\qquad
(c) Write the normalised floating point representation of the negative decimal value -6.75 in the boxes below. Show how you have arrived at your answer.
\qquad
\qquad
\qquad
\qquad
Answer:

Mantissa
Exponent
(d) An alternative two's complement format representation is proposed. In the alternative representation 6 bits will be used to store the mantissa and 6 bits will be used to store the exponent.

Existing Representation (8-bit mantissa, 4-bit exponent):

Proposed Alternative Representation (6-bit mantissa, 6-bit exponent):

Mantissa

Exponent

Explain the effects of using the proposed alternative representation instead of the existing representation.
\qquad
\qquad
\qquad
\qquad

Q9.
A particular computer uses a normalised floating point representation with a 7-bit mantissa and a 5-bit exponent, both stored using two's complement.
(a) Four bit patterns that are stored in this computer's memory are listed below and are labelled with the letters \mathbf{A} to \mathbf{D}. Three of the bit patterns are valid floating point numbers and one is not.
A

B

0	1	0	0	0	0	1

Mantissa
C

Exponent
D

0	0	1	1	1	1	0
Mantissa						

1	1	1	1	0
Exponent				

E2. Complete the table below. In the correct letter (A-D) column write the appropriate letter from A to D to indicate which bit pattern matches the description in the Value description column.

Do not use the same letter more than once.

Value description	Correct letter (A-D)
A negative value	
The largest positive number of the four values	
A value that is not valid in the representation because it is not normalised	

(b) This is a floating point representation of a number:

0 - 1	1	0	1	0	1	0	0	1	0	0
tissa							Exponent			

Calculate the denary equivalent of the number. Show how you have arrived at your answer.

Working \qquad
\qquad
\qquad

Answer \qquad
(c) This is a floating point representation of a number:

0	1	0	0	1	1	0

Mantissa

Exponent

Calculate the denary equivalent of the number. Show how you have arrived at your answer.

Working \qquad

\qquad
(d) Write the normalised floating point representation of the denary value 2944 in the boxes below. Show how you have arrived at your answer.

Working \qquad
\qquad
\qquad

Answer \qquad

Mantissa

Exponent
(e) There can be a loss of precision when a denary number is stored using this floating point system.

The closest possible representation of the denary number 12.87 is shown below:

Mantissa

0	0	1	0	0

Exponent

By converting this bit pattern back into denary, it can be seen that the actual number stored is 12.75, not 12.87.
(i) Calculate the absolute error that has occurred.
\qquad
\qquad
(ii) Calculate the relative error that has occurred. Express your answer as a percentage to four decimal places.

(iii) Sometimes a floating point calculation can produce a result that is so close to zero that the result's closest possible representation is zero.
What is the name given to this specific type of error?

Q10.
The image below shows an 8-bit bit pattern.

1	0	1	1	0	1	1	0

(a) If the bit pattern above is an unsigned binary integer, what is the denary equivalent of this bit pattern?
\qquad
\qquad
(b) If the bit pattern above is a two's complement binary integer, what is the denary equivalent of this bit pattern?
\qquad
\qquad
\qquad
\qquad
(c) What is the range of denary numbers that can be represented using 8-bit two's complement binary integers?
\qquad
\qquad
\qquad
\qquad
(d) If the bit pattern above is an unsigned binary fixed point number with 3 bits before and 5 bits after the binary point, what is the denary equivalent of this bit pattern?

(e) What is the hexadecimal equivalent of the bit pattern above?
\qquad
\qquad
(f) Why are bit patterns often displayed using hexadecimal instead of binary?
\qquad
\qquad
(g) Describe a method that can, without the use of binary addition, multiply any unsigned binary integer by the binary number 10 (the denary number 2).
\qquad
\qquad
\qquad

Q11.

A normalised floating point representation uses an 8-bit mantissa and a 4-bit exponent, both stored using two's complement format.
(a) In binary, write the largest positive number that can be represented using this normalised floating point system in the boxes below:

Mantissa

Exponent
(b) This is a floating point representation of a number:

0 - 1	0	1	1	0	0	0	0	0	1	1
Mantissa								en		

Calculate the denary equivalent of the number. Show how you have arrived at your answer.

Working \qquad

(c) This is a floating point representation of a number:

Calculate the denary equivalent of the number. Show how you have arrived at your answer.

Working \qquad
\qquad
\qquad

Answer \qquad
(d) Write the normalised floating point representation of the negative denary value -108 in the boxes below. Show how you have arrived at your answer.

Working \qquad
\qquad
\qquad
\qquad

Answer

(e) (i) In the context of floating point representation, explain what overflow is.

Place one tick next to the operation that may cause overflow.

Operation	May cause overflow? (Tick one box)
Subtracting a very small number from a large number.	
Dividing a large number by a very small number.	
Multiplying a large number by a very small number.	

Q12.
(a) What is the denary equivalent of the hexadecimal number A7?

You may use the space below for rough working. You may get some marks for your working, even if your answer is incorrect.

Answer \qquad
(b) Represent the denary value 7.625 as an unsigned binary fixed point number, with 4 bits before and 4 bits after the binary point.

Use the space below for rough working.

\qquad
(c) Represent the denary value -18 as an 8 -bit two's complement binary integer.

Answer \qquad
(d) What is the largest positive denary value that can be represented using 8-bit two's complement binary?

Use the space below for rough working.

Answer \qquad
(e) Describe how 8-bit two's complement binary can be used to subtract one number from another number. In your answer you must show how the calculation 23 - 48 would be completed using the method that you have described.

You may use the space below for rough working.

Answer \qquad

Figure 1 shows a state transition diagram for a finite state machine (FSM).
Table 1 shows the outputs produced by the finite state machine in Figure 1 for some possible input strings. Some of the outputs are missing from the table below. Input strings are processed starting with the right-most bit.

Figure 1

Table 1

Input string	Output string
00010011	11101101
00010010	(a)
00010100	11101100
00010101	(b)

(f) What output string should be in position (a) in the table?
(g) What output string should be in position (b) in the table?
\qquad
\qquad
(h) What is the purpose of the finite state machine shown in Figure 1?
\qquad
\qquad
(i) A finite state machine can be represented as a state transition diagram or as a state transition table. Table $\mathbf{2}$ is an incomplete state transition table for Figure 1.

Complete the unshaded cells in the table below.
Table 2

(Total 17 marks)

Q13.

A particular computer uses a normalised floating point representation with an 8-bit mantissa and a 4-bit exponent, both stored using two's complement.
(a) Four bit patterns that are stored in this computer's memory are listed in Figure 1 and are labelled with the letters A to D. Three of the bit patterns are valid floating point numbers and one is not.

Figure 1

A

Mantissa

Exponent
B

0	1	0	0	0	0	0	0

Mantissa
C

0	0	1	0	1	0	0	0

Mantissa
D

1	0	1	0	1	0	0	0

Mantissa

M
Complete Table 1 below. In the Correct letter (A-D) column write the appropriate letter from \mathbf{A} to \mathbf{D} to indicate which bit pattern in Figure 1 is an example of the type of value described in the Value description column.

Do not use the same letter more than once.

Table 1

Value description	Correct letter (A-D)
A negative value.	
The smallest positive value that can be represented.	
A value that is not valid in the representation because it is not normalised.	

(b) This is a floating point representation of a number.

0	1	0	1	0	0	0	0

Mantissa

0	1	1	0

Exponent

Calculate the denary equivalent of the number. Show how you have arrived at your answer.

Working: \qquad
\qquad
\qquad

Answer: \qquad
(c) Write the normalised floating point representation of the negative denary value -7.75 in the boxes below. Show how you have arrived at your answer.

Working: \qquad
\qquad
\qquad
\qquad

Answer: \qquad

(d) There can be a loss of precision when a denary number is stored using this floating point system.

The closest possible representation of the denary number 6.9 is shown below.
EM

0	1	1	0	1	1	1	0

Mantissa

0	0	1	1

Exponent

By converting this bit pattern back into denary it can be seen that the actual number stored is 6.875, not 6.9.
(i) Calculate the absolute error that has occurred.
\qquad
\qquad
(ii) Calculate the relative error that has occurred.
\qquad
\qquad
(iii) Explain how the floating point system used could be modified to allow a more accurate representation of 6.9.
\qquad
\qquad
\qquad

Q14.
The table below is a partially complete representation of the rules for adding together two bit values. The first two columns represent the two bit values to add. The first row has been completed and represents the binary addition rule $0+0=0$. Carry occurs when the answer cannot be stored in 1 bit.

		Answer	Carry
0	0	0	0
0	1		
1	0		
1	1		

Complete the table above to show the Answer and Carry values for the given binary addition rules.

Q15.

Create a folder/directory for your new program.
The algorithm, represented as a flowchart below, and the variable table, describe the converting of a 4 -bit binary value into denary.

What you need to do

Write a program for the above algorithm.
Test the program by showing the result of entering the values $1,1,0,1$ (in that order).

Save the program in your new folder/directory.

Evidence that you need to provide

(a) Your PROGRAM SOURCE CODE.
(b) SCREEN CAPTURE(S) for the test described above.
(c) What is the largest denary number that could be output by the algorithm represented by the flowchart in the diagram above?
\qquad
(d) The algorithm represented by the flowchart above can convert sixteen different bit patterns into denary.

patterns could be converted into denary?
\qquad
(e) When developing a new system the stages of the systems development life cycle could be followed.

At which stage of the systems development life cycle would the flowchart above have been created?

(f) At which stage of the systems development life cycle would the algorithm represented by the flowchart above be automated using a programming language?

Q16.
A normalised floating point representation uses a 7-bit mantissa and a 5-bit exponent, both stored using two's complement format.
(a) In binary, write the most negative number that can be represented using this normalised floating point system in the boxes below:

(b) This is a floating point representation of a number:

Mantissa

Exponent

Calculate the denary equivalent of the number. Show how you have arrived at your answer.

Working: \qquad
\qquad
\qquad

Answer: \qquad
(c) Write the normalised floating point representation of the denary value 416 in the boxes below. Show how you have arrived at your answer.

Working: \qquad

(d) Write the normalised floating point representation of the negative denary value -12.5 in the boxes below. Show how you have arrived at your answer.

Working: \qquad
\qquad
\qquad
\qquad

Answer:

(e) The table below lists three different calculations that might cause an error to occur
in a floating point system.
Complete the table below by stating the name of the type of error that may occur for each calculation. You should not give the same answer more than once.

Calculation	Type of error
Multiplying two very large numbers together.	
Dividing a number by a very large number.	
Adding together two numbers of very different sizes eg a tiny number to a very big number.	

(Total 12 marks)

Q17.
(a) Represent the denary number 123 in binary using 8 bits.

Answer \qquad
(b) How many different denary numbers can be represented using 8-bit binary?

Answer \qquad
(c) What is the hexadecimal equivalent of the denary number 123 ?
\qquad
(d) Why are bit patterns often displayed using hexadecimal instead of binary?
\qquad
\qquad

Q18.

The table below shows the values output by a 3-bit Gray Code (GC) counter.
Some of the GC values are missing.

(a) What value should be in position (a) in the table?
\qquad
(b) What value should be in position (b) in the table?
\qquad
(c) What value should be in position (c) in the table?
(d) State one advantage of GC counters compared with pure binary counters.
\qquad
\qquad

Q19.

A normalised floating point representation uses an 8-bit mantissa and a 4-bit exponent, both stored using two's complement format.
(a) In binary, write in the boxes below, the smallest positive number that can be represented using this normalised floating point system.

Calculate the denary equivalent of the number. Show your working.
EXANM PAPERS PRACTICE
\qquad

Answer: \qquad
(c) Write the normalised floating point representation of the denary value 12.75 in the boxes below. Space has been provided for you to do rough work, if required.

Rough Work: \qquad
\qquad
\qquad
Answer:

Mantissa

Exponent
(d) Floating point numbers are usually stored in normalised form.

State two advantages of using a normalised representation.
Advantage 1: \qquad
\qquad
\qquad
Advantage 2: \qquad
\qquad
\qquad
(e) An alternative two's complement format representation is proposed. In the alternative representation $\mathbf{7}$ bits will be used to store the mantissa and 5 bits will be used to store the exponent.

Existing Representation (8-bit mantissa, 4-bit exponent):

Proposed Alternative Representation (7-bit mantissa, 5-bit exponent):

Explain the effects of using the proposed alternative representation instead of the existing representation.
\qquad
\qquad
\qquad
\qquad
\qquad

Q20.
The diagram below shows the contents of a memory location.

1	0	1	0	0	1	1	1

(a) What is the denary equivalent of the contents of this memory location if it represents an unsigned binary integer?

Use the space below for rough working.

Answer \qquad
(b) What is the denary equivalent of the contents of this memory location if it represents an unsigned binary fixed point number, with 4 bits before and 4 bits after the binary point?

Use the space below for rough working.

Answer \qquad

(c) What is the denary equivalent of the contents of this memory location if it represents a two's complement binary integer?

Use the space below for rough working.

Answer \qquad
(d) What is the hexadecimal equivalent of the binary pattern shown in diagram above?

Use the space below for rough working.
\qquad

Q21.

A normalised floating point representation uses an 8-bit mantissa and a 4-bit exponent, both stored using two's complement format.
(a) In binary, write the largest positive number that can be represented using this normalised floating point system in the boxes below.

Mantissa

Exponent
(b) This is a floating point representation of a number.

Calculate the denary equivalent of the number, showing how you have arrived at your answer.

Working: \qquad
\qquad

(c) Write the normalised floating point representation of the denary value 13.625 in the boxes below. Space has been provided for you to do rough work.

Rough Work: \qquad
\qquad
\qquad
Answer:

Mantissa

Exponent
(d) Write the normalised floating point representation of the denary value 0.34375 in the boxes below. Space has been provided for you to do rough work.

Rough Work: \qquad
\qquad
\qquad
Answer:

(e) Explain what overflow is and give an example of a situation which might cause overflow to occur.
\qquad

\qquad
\qquad
\qquad
\qquad
(b) Any black and white image will require only a single bit to encode each pixel.

Figure 1 shows a black and white bitmapped image.
Figure 2 shows the memory locations where the image is stored.
The first byte used for the pixel data is at location 187.
The pixel data are stored row-by-row, starting with row 1 :

- black pixels are encoded with the bit set to 1
- white pixels are encoded with the bit set to 0 .

Figure 1

Figure 2

(i) What will be the contents of location 189 in binary?

Use the grid for rough working.

(ii) What will be the contents of location 190 in denary?
\qquad
\qquad
(c) Colour images can also be encoded as bitmaps.
(i) Explain how the colour of each pixel is encoded.
\qquad
\qquad
(ii) How many bits are required to store each pixel for a 256-colour image?
\qquad
\qquad
(d) The image in Figure 3 was created with a vector graphics program.

Figure 3

(i) Describe how a vector graphics program stores the data about the image.

\qquad
(ii) Name three properties that would be stored for a circle object.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Q23.
Computer programs process and store numeric data.
A computer game stores the following data:

- level of difficulty as an integer in the range 1 to 15
- player rating as an integer in the range -120 to +120
- fuel level as a number with a fractional part.

This number is in the range 0 to 100 .
(a) The level of difficulty is stored as an unsigned binary number using a single byte. For a particular game, the level of difficulty was set at 11.

Calculate its binary value.

(b) A player rating value is stored as a two's complement integer using a single byte.
(i) Convert the player rating value of 119 into binary.

(ii) Convert the player rating value of -13 into binary.
(c) A fuel level value is stored as an unsigned fixed point number using two bytes with four bits after the binary point.
Convert the fuel level value of 25.75 into binary.

Q24.
(a) (i) Explain what is meant by a pixel.
\qquad
\qquad
(ii) How are pixels encoded to form a bitmapped image?
\qquad
\qquad
(b) Images can be saved in a bitmapped image file as a '256 colour bitmap'.

How many bytes are used to store each pixel? \qquad
(c) The first 50 bytes of these bitmapped files are used for header data. See Figure 1.

(d) A high level programming language has a function ReadImageByte which is used to $=-$ read the contents of a bitmapped image file.

It is defined in the help files as follows:
Function ReadImageByte : Byte

The function ReadImageByte returns the next byte of data from a bitmapped image.

The pseudo-code that describes the process of reading the contents of the file header data is shown below.

```
Procedure ReadHeaderData
    For Position \leftarrow 1 To 50 Do
        CurrentHeader [Position] }\leftarrow ReadImageByt
    EndFor
EndProcedure
```

(i) Complete the identifier information in the table below for this pseudo-code.

Variable Identifier	Data Type	Description
Position	Integer	
Current Header		Stores theheader data

The first four bytes of the header data are:

First	Second	Third	Fourth
51	63	13	11

(ii) What binary value will be assigned to variable CurrentHeader [3]?
\qquad
(e) The width and height of the bitmapped image are stored by variables ThisWidth and ThisHeight.

A procedure ReadPixelData is to read the remaining contents of a bitmap image i.e. the byteswhich represent the individual pixels and to organise these as an image

(i) Complete the gaps in the pseudo-code below.

```
Procedure ReadPixelData
    For X & 1 To ThisHeight Do
        For Y \leftarrow 1 To 
            ThisByte \leftarrow ( ReadImageByte
            ByteData [
```

\qquad

``` , Y] \(\leftarrow\) ThisByte
```


EndFor

```
EndFor
EndProcedure
```

(ii) What data structure has the programmer used for variable ByteData?
(f) A graphics studio has produced all the graphic images for a new computing textbook.

The images all need to be 'tidied up' and, rather than edit every one with graphics software, it is suggested that the task be given to a computer programmer who will, for each image:

- remove the top row of pixels, and
- remove all the pixels in the first two columns - see Figure 3.

Byte 51

255	255	255	255	255	255	255	255
255	25	25	96	96	24	24	113
255	114	22	87	13	29	31	45
255	96	28	87	29	49	45	45
255	101	28	28	27	71	23	23

The ReadPixelData procedure is to be refined so that not all pixels will be retained.
The enclosed pixels in Figure 3 are those to be retained and these bytes will be written to an array Final. These pixels, together with the header data bytes, will form the amended bitmapped file.

The test pixel data shown in Figure 3 are to be used to trace the amended ReadPixelData procedure.
EXAM Mint in fipERS PRACTICE
Procedure ReadPixelData
Counter $\leftarrow 0$
For $X \leftarrow 1$ to ThisHeight Do
For $Y \leftarrow 1$ to ThisWidth Do
ThisByte \leftarrow ReadImageByte
If ($\mathrm{X}>1$ AND $\mathrm{Y}>2$) Then
Final [Counter] \leftarrow ThisByte
Counter \leftarrow Counter + 1
EndIf
EndFor
EndFor
EndProcedure
Trace the execution of the pseudo-code for two iterations only of the outer loop (the loop controlled by variable X) by completing Figure 4.

(g) In this question identifier names have been used in the design for variables and procedure and function names.
(i) Name one other program element for which the programmer would allocate an identifier name.
\qquad
(ii) Programming languages impose restrictions about the choice of identifier names; for example a <Space> character cannot be included.

State two other restrictions in a programming language with which you are familiar.
\qquad
\qquad

Q25.

The binary pattern 100110000100 can be interpreted in a number of different ways.
(a) Convert the binary pattern to hexadecimal.
\qquad
(b) What is the decimal value if this binary pattern represents BCD?
\qquad
(c) The above binary pattern represents a normalised two's complement floating point number with an eight bit mantissa followed by a four bit exponent.
(i) State its value in denary.
\qquad

=2. (iii) How does the above binary pattern indicate that the floating point number is
\qquad
(iv) What is the largest positive denary number that can be stored using this representation?
\qquad
\qquad

Q26.

The figure below shows a very small part of a sound wave recorded through a microphone connected to a computer.

Measurement

The dots each represent a recorded measurement of the sound wave. The recorded measurements are stored in main memory shown in the table below, with the first measurement stored in main memory location 700.

Memory Address	Measurement
700	00010100
701	00111100
702	(e)
703	10111101
704	11100011
705	11110000
706	0111011100
707	01100100
708	
709	

(a) Name two items of essential software which must be in the main memory at the time this recording process takes place.

1. \qquad
2. \qquad
(b) (i) Explain what is meant by the sampling rate.
\qquad
(ii) Study the figure above and state what the sampling rate is for this recording.
(1000 milliseconds $=1$ second).
\qquad
(c) Study the table above. How many bits are allocated to each sample?

(d) (i) State one advantage of increasing the number of bits allocated to each sample.
(ii) State one disadvantage of increasing the number of bits allocated to each sample.
(e) Study the figure above. What will be the binary value stored at location 702 shown in the table?
\qquad
(f) In the table each of the binary values represents part of a sound file.

Give three other possible interpretations of one or more bytes held in main memory when the computer is being used for any application (excluding part of a picture or other media file).

1. \qquad
2. \qquad
3. \qquad

Q27.
The decimal number 57 is entered on a keyboard in the form of two ASCII characters ' 5 ' and ' 7 '. These are stored in the computer's memory as

0	0	1	1	0	1	0	1
0	0	1	1	0	1	1	1

(a) Express these binary values in hexadecimal.
\qquad
(b) Express these binary values in denary.
\qquad
(c) By completing the table below, show how the decimal value 57 could be stored as a signed integer using two's complement in 8 bits.

(d) By completing Table 2, show how the decimal value 57.0 could be stored in normalised floating point form as an 8 bit mantissa followed by an 8 bit exponent. Both mantissa and exponent are to be stored as signed values using two's complement.

Table 2

(e) Give two advantages of normalised floating point format over fixed point format.

1. \qquad
\qquad
2. \qquad
\qquad

Q28.
The table below shows the contents of three memory locations.

Address Memory contents

	56
	00110111
58	10001001
	11000000

If the binary codes each represent a pure binary integer, what are the denary numbers stored at locations 56 and 57 ?

Address	Memory contents	Denary
56	00110111	
57	10001001	

(Total 2 marks)

Q29.
Figure 1 below shows an area of main memory storing a text file which is about to be sent to a printer.

Table 1
ASCII Code Table

Character	Decimal	Character	Decimal	Character	Decimal
<Space>	32	I	73	R	82
A	65	J	74	S	83

B	66	K	75	T	84
C	67	L	76	U	85
D	68	M	77	V	86
E	69	N	78	W	87
F	70	O	79	X	88
G	71	P	80	Y	89
H	72	Q	81	Z	90

(a) Assuming the first character to be printed is held at address 150, show the first four characters to be printed on the page. Use Table 1.
\qquad
(b) Figure 2 shows there are two printers available on the PC and they are connected to the computer. One is connected to port A, the other to port B.

The cable which connects to port A has 4 wires and connects to a USB printer.
The cable which connects to port B has 25 wires of which eight are used for sending data bits.
(i) What does USB stand for?
\qquad
(ii) What type of data transmission occurs using Port B?
\qquad
(iii) The computer communicates with the printer connected to port B using a handshaking protocol. Explain this term.
\qquad
(iv) The port B cable uses 8 wires for data bits. Using a handshaking protocol, the other wires are used to send various signals. Name one signal.
\qquad
(v) Figure 1 shows the first four bytes of the text file to be printed. Name two necessary items of software resident in main memory at the time the printout is produced.

1. \qquad
2. \qquad
(Total 10 marks)

Q30.

The binary pattern 010000001110 can be interpreted in a number of different ways.
(a) State its hexadecimal representation.

(b) State its value as a decimal number if it represents a signed binary integer using two's complement representation.

(c) State its value as a decimal number if it represents an unsigned fixed point number with four bits after the binary point.
\qquad
(d) (i) State its value as a decimal number if it represents a two's complement floating point number with an eight bit mantissa followed by a four bit exponent.

\left.| Mantissa | | | | Exponent | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 |$\right) 0$ (

(ii) This floating point number is said to be normalised

How does the bit pattern indicate that this number is normalised?
\qquad
\qquad
(iii) What is the largest positive value that can be stored in this floating point representation?
\qquad

Q31.
(a) Convert the denary values 27 and -19 into 8-bit binary integers using two's complement format.

27
-19

(b) Add together your two 8-bit binary values.

27
-19

(c) The result has an additional bit.
(i) Give the name of this bit \qquad
(ii) How can it be used? \qquad
\qquad
(d) State your binary values for 27 and -19 in Hexadecimal.

27
-19 \qquad

Q32.
The figure below shows the main memory and processor of a computer system. Data moves between these two components along the data bus which uses parallel data transmission.

(a) (i) Show the binary representation for the denary value 59.
\qquad
(ii) Add to the diagram in the figure an 8-bit data bus connecting the components showing the value 59 in its binary form being transferred from the main memory to the processor.
(b) Give three possible interpretations of the byte being read in part (a) (ii).

Q33.
 KAM PAPERS PRACTICE

The binary pattern 100101110100 can represent different numbers.
(a) State its hexadecimal representation.
\qquad
(b) State its value in denary if it represents an unsigned fixed point number with four bits after the binary point.
\qquad
(c) State its value in denary if it represents a two's complement fixed point number with four bits after the binary point.
\qquad
\qquad
(d) (i) State its value in denary if it represents a normalised two's complement floating point number with an eight bit mantissa followed by a four bit exponent.
\qquad
\qquad
\qquad
(ii) Give a reason for storing floating point numbers in normalised form.
\qquad
\qquad

Q34.
(a) The ASCII code for the character ' 0 ' (zero) is 00110000 . By completing the boxes show how 27 would be represented in a 16 bit word:
(i) as ASCII characters;

(ii) in pure binary (unsigned binary).

(b) Unicode is another coding system for characters. Why is it not possible to code 27 into the 16 bit word using Unicode?
\qquad
\qquad
(c) What is the largest value that can be stored in a 16 bit word when the following coding systems are used?

Pure binary (unsigned binary)

Q35.

The binary pattern 100011000100 can be interpreted in a number of different ways.
(a) State its value in denary if it represents an unsigned fixed point number with four bits after the binary point.
\qquad
(b) (i) State its value in denary if it represents a two's complement floating point number with an eight bit mantissa followed by a four bit exponent.
\qquad
(ii) The floating point number 100011000100 is said to be normalised.

How does the bit pattern indicate that this number is normalised?
\qquad
\qquad
(iii) Why should floating point numbers be stored in normalised form?

