Exam Papers Practice

5.3 Integration Question Paper

To be used by all students preparing for DP IB Maths AA SL Students of other boards may also find this useful

Question la

A function f is defined by the equation $f(x)=-3 x+35$.
Sketch the graph of $y=f(x)$ in the interval $0 \leq x \leq 10$.

Question 1b

Use your sketch from part (a), along with relevant area formulae, to work out the value of the integral

$$
\int_{1}^{9}(-3 x+35) \mathrm{d} x
$$

You should not use your GDC to find the value of the integral.

Exam

 Papers Practice
Question 2

The derivative of the function f is given by

$$
f^{\prime}(x)=\frac{9}{2} x^{2}+7 x-2
$$

and the curve $y=f(x)$ passes through the point $\left(-3,-\frac{11}{2}\right)$.
Find an expression for f.

Question 3a

A curve $y=f(x)$ has the gradient function $f^{\prime}(x)=4 a x+6$, where $a \in \mathbb{R}$ is a constant. The diagram below shows part of the curve, with the x and y intercepts labelled and where V represents the vertex of the curve.

Find
(i)
the value of a
(ii)
the equation of the curve $y=f(x)$
(iii)
the coordinates of V.

Exam Papers Practice

Question 3b

Find the area between the curve and the x-axis.

Question 4a

A section of the curve with equation $y=\frac{1}{2}(x-1)(x+5)$ is shown below:

The shaded region in the diagram is bounded by the curve, the x-axis and the line $x=2$.
(i) Write down an integral for the area of the shaded region S.
(ii) Find the area of S . Give your answer as a fraction.

[3 marks]

Exam Papers Practice

Question 4b

The shaded region R in the diagram is bounded on three sides by the curve, the x-axis and the y-axis. The boundary on the fourth side is a straight line parallel to the x-axis, and that line, the curve and the line $x=2$ all intersect at a single point.

Find the area of region R. Give your answer as a fraction.

Question 5a

A company is designing a plastic piece for a new game. The piece is to be in the form of a prism, with a cross-sectional area as indicated by the shaded region R in the following diagram:

Region R is bounded, as shown, by the positive x - and y-axes and the curve with equation $y=\frac{6(x-3)}{2 x-9}$. All units are in centimetres.

Using technology, or otherwise, find the coordinates of the points of intersection of the curve with the x-and y-axes.
[2 marks]

Question 5b

The volume of the puzzle piece is to be $30 \mathrm{~cm}^{3}$.
Find the length of the puzzle piece, giving your answer correct to 3 significant figures.
[4 marks]

Exam Papers Practice

Question 6a

The following diagram shows part of the graph of $f(x)=(2 x+1)\left(4 x^{2}-10 x+41\right), x \in \mathbb{R}$. The shaded region is bounded by the x-axis, the y-axis and the graph of f.
(i) Write down an integral for the area of region R .
(ii) Find the area of region R .

Question 6b

$A B C D$ is a parallelogram with vertices $A(0,0), B\left(1, \frac{7}{3}\right), C$ and $D(a, 0)$, as shown in the diagram below. The area of $A B C D$ is equal to the area of region R above.

By first finding the value of a, the x-coordinate of point D , determine the coordinates of point C . The coordinates should be given as exact fractions.

Exam Papers Practice

Question7a

The shaded region R in the following diagram is bounded by the x-axis, the line $y=8 x-4$ and the curve $y=-x^{3}+x^{2}+10 x+8$.

Using technology, or otherwise, find the coordinates of
(i) the point of intersection between the curve and the line
(ii) the point of intersection between the line and the x-axis

(iii) the point of intersection between the curve and the x-axis that is shown in the diagram.

Question 7b

Show that the area of region R is equal to exactly $\frac{439}{12}$ units 2. Be sure to show all of your working.

Question 8a

Consider the function f where $f(x)=x\left(x^{2}-12\right)+16, x \in \mathbb{R}$.
The turning points on the graph of f are A and B. The x-coordinates of points A and B are a and b respectively, where $a<b$.
(i)

Determine an expression for the derivative of f.

(ii)

Hence find the values of a and b, and the coordinates of points A and B.
[4 marks]
Exam
Papers
Practice

Question 8b

Point C is the point on the graph with x-coordinate c , where $\mathrm{c}>0$ and $f(c)=32$.
(i)

Determine the value of c.
(ii)

Sketch the graph of f, clearly indicating the locations of points A, B and C, along with all other points where the graph intersects one of the coordinate axes.
[3 marks]

Question 8c

Region R is the region enclosed by the graph of f and the line $y=32$.
Find the area of region R.

Question 9a

For a particle P travelling in a straight line, the velocity, $v \mathrm{~m} / \mathrm{s}$, of the particle at time t seconds is given by the equation

$$
v(t)=2 t^{2}-8 t+9, t \geq 0
$$

Sketch the graph of $v(t)$ in the interval $0 \leq t \leq 5$.

Question 9b

The distance travelled between times t_{1} and t_{2} by a particle moving in a straight line may be found by finding the area beneath the particle's velocity-time graph between those two times.

Find the distance travelled by the particle P between the times $t=1$ and $t=4.5$.

