铛
 EXAM PAPERS PRACTICE

Boost your performance and confidence with these topic-based exam questions

Practice questions created by actual examiners and assessment experts

Detailed mark scheme
Suitable for all boards
Designed to test your ability and thoroughly prepare you

5.3 Integration

5.3.1 Trapezoid Rule: Numerical Integration

Trapezoid Rule: Numerical Integration

What is the trapezoid rule?

- The trapezoidal rule is a numerical method used to find the approximate area enclosed bya curve, the \boldsymbol{X}-axis and two vertic al lines
- it is also known as 'trapezoid rule' and 'trapezium rule'
- The trapez oidal rule finds an approximation of the area by summing of the areas of trapez oids beneath the curve

$$
\begin{gathered}
y_{0}=f(a), \quad y_{1}=f(a+h), \quad y_{2}=f(a+2 h) \text { etc } \\
\int_{a}^{b} f(x) d x \approx \frac{1}{2} h\left[\left(y_{0}+y_{n}\right)+2\left(y_{1}+y_{2}+\ldots+y_{n-1}\right)\right] \\
\text { where } h=\frac{b-a}{n}
\end{gathered}
$$

- Note that there are n trapezoids (also called strips) but $(n+1)$ function values $\left(y_{i}\right)$
- The trapezoidal rule is given in the formula booklet

What else can I be asked to do with the trapezoid rule?

- Comparing the true answer with the answer from the trapezoid rule
- This mayinvolve finding the percent age error in the approximation
- The true answermaybe given in the question, found from a GDC orfrom work on integration

- Exam Tip

- Ensure you are clear about the difference between the number of data points (y values) and the number of strips (number of trapezoids) used in a Trapezoid Rule question
- Although it shouldn't be too much trouble to type the trapezoid rule into your GDC in one go, it may be wise to work parts of it out separately and write these down as part of your working out

Worked example

a) Using the trapezoidal rule, find an approximate value for

$$
\int_{0}^{4} \frac{6 x^{2}}{x^{3}+2} d x
$$

to 3 decimal places, using $n=4$.
a)

b) Given that the are a bounded by the curve, the X-axis and the lines $x=0$ and $x=4$ is 6.993 to three decimal places, calculate the percentage errorin the trapezo idal rule approximation.

5.3.2 Introduction to Integration

Introduction to Integration

What is integration?

- Integration is the opposite to differentiation
- Integration is referred to as antidifferentiation
- The result of integration is referred to as the antiderivative
- Integration is the process of finding the expression of a function(antiderivative) from an expression of the derivative (gradient function)

What is the notation for integration?

- An integral is normally written in the form

$$
\int f(x) \mathrm{d} x
$$

- the large operator \int means "integrate"
- "d X^{\prime} " indicates which variable to integrate with respect to
- $f(x)$ is the function to be integrated (sometimes called the integrand)
- The antiderivative is sometimes denoted by $\mathrm{F}(\boldsymbol{x})$
- there's then no need to keep writing the whole integral; referto it as $\mathrm{F}(x)$
- $\mathrm{F}(x)$ mayalso be called the indefinite int egral of $f(x)$

What is the constant of integration?

- Recall one of the special cases from Differentiating Po wers of \mathbf{x}
- If $f(x)=a$ then $f^{\prime}(x)=0$
- This means that integrating 0 will produce a constant term in the antiderivative
- azero term wouldn't be written as part of a function
- every function, when integrated, potentially has a constant term
- This is called the constant of integration and is usually denoted by the letter \boldsymbol{C}
- it is often referred to as "plus \boldsymbol{C} "
- Without more information it is impossible to deduce the value of this constant
- there are endless antiderivatives, $\mathrm{F}(x)$, fora function $f(x)$

Exam Papers Practice

Integrating Powers of x

How dolintegrate powers of x ?

- Powers of \boldsymbol{X} are integrated according to the following formulae:
- If $f(x)=x^{n}$ then $\int f(x) \mathrm{d} x=\frac{x^{n+1}}{n+1}+c$ where $n \in \mathbb{Q}, n \neq-1$ and c is the constant of integration
- This is given in the formula booklet
- If the power of \boldsymbol{X} is multiplied by a constant then the integral is also multiplied by that constant
- If $f(x)=a x^{n}$ then $\int f(x) \mathrm{d} x=\frac{a x^{n+1}}{n+1}+c$ where $n \in \mathbb{Q}, n \neq-1$ and a is a constant and \mathcal{C} is the constant of integration
dy
- $\frac{\mathrm{d} x}{\mathrm{~d}}$ notation can still be used with integration
- Note that the formulae above do not apply when $X=-1$ as this would lead to division byzero
- Rememberthe special case:
- $\int a \mathrm{~d} x=a x+c$
- e.g. $\int 4 \mathrm{~d} x=4 x+c$
- This allows constant terms to be integrated
- Functions involving roots will need to be rewritten as fractional powers of X first
- eg. If $f(x)=5 \sqrt[3]{x}$ then rewrite as $f(x)=5 x^{\frac{1}{3}}$ and integrate
-. Functions involving fractions with denominators in terms of \boldsymbol{X} will need to be rewritten as negative powers of X first
- e.g. If $f(x)=\frac{4}{x^{2}}+x^{2}$ then rewrite as $f(x)=4 x^{-2}+x^{2}$ and integrate
- The formulae for integrating powers of \boldsymbol{X} apply to all rational numbers so it is possible to integrate any expression that is a sum or difference of powers of X
- e.g. If $f(x)=8 x^{3}-2 x+4$ then

$$
\int f(x) \mathrm{d} x=\frac{8 x^{3+1}}{3+1}-\frac{2 x^{1+1}}{1+1}+4 x+c=2 x^{4}-x^{2}+4 x+c
$$

- Products and quotients cannot be integrated this wayso would need expanding/simplifying first
- e.g. If $f(x)=8 x^{2}(2 x-3)$ then

$$
\int f(x) d x=\int\left(16 x^{3}-24 x^{2}\right) d x=\frac{16 x^{4}}{4}-\frac{24 x^{3}}{3}+c=4 x^{4}-8 x^{3}+c
$$

What might I be asked todo once l've found the anti-derivative (integrated)?

- With more information the constant of integration, \boldsymbol{c}, can be found
- The area under a curve can be found using integration

- Exam Tip

- You can speed up the process of integration in the exam by committing the pattern of basic integration to memory
- In general you can think of it as 'raising the powerby one and dividing by the new power'
- Practice this lots before your exam so that it comes quickly and naturally when doing more complicated integration questions

Exam Papers practice
© 2024 Exam Papers Practice

Worked example

Given that

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=3 x^{4}-2 x^{2}+3-\frac{1}{\sqrt{x}}
$$

find an expression for y in terms of X.

Firstly rewire all terns as powers of x

$$
\begin{aligned}
& \frac{d y}{d x}= 3 x^{4}-2 x^{2}+3-x^{-\frac{1}{2}} \longleftarrow \text { fractional AnD negative! } \\
& y= \int\left(3 x^{4}-2 x^{2}+3-x^{-\frac{1}{2}}\right) d x \\
& \therefore y= \frac{3 x^{5}}{5}-\frac{2 x^{3}}{3}+3 x-\frac{x^{\frac{1}{2}}}{\frac{1}{2}}+c \\
& \text { special case } \\
& \text { take care with constant of }
\end{aligned}
$$

negatives, $-\frac{1}{2}+1=\frac{1}{2}$
$\therefore y=\frac{3}{5} x^{5}-\frac{2}{3} x^{3}+3 x-2 \sqrt{x}+c$

5.3.3 Applications of Integration

Finding the Constant of Integration

What is the constant of integration?

- When finding an anti-derivative there is a constant term to consider
- this constant term, usually called \mathcal{C}, is the constant of integration
- In terms of graphing an anti-derivative, there are endless possibilities
- collectively these maybe referred to as the family of antiderivatives or family of curves
- the constant of integration is determined by the exact location of the curve
- if a point on the curve is known, the constant of integrationcan be found

How dolfind the constant of integration?

- For $\mathrm{F}(x)+c=\int f(x) \mathrm{d} x$, the constant of integration, c - and so the particular ant iderivative - can be found if a point the graph of $y=\mathrm{F}(\boldsymbol{X})+c$ passes through is known

STEP 1

If need be, rewrite $f(X)$ into an integrable form
Each term needs to be a power of \boldsymbol{X} (or a constant)

STEP 2

Integrate each term of $f^{\prime}(x)$, remembering the constant of integration, " $+c$ " (Increase power by land divide by new power)

STEP 3 m Papers Practice

Substitute the \boldsymbol{X} and \boldsymbol{y} co ordinates of a given point in to $\mathrm{F}(\boldsymbol{x})+\boldsymbol{c}$ to form an equation in \boldsymbol{C} Solve the equation to find \boldsymbol{c}

- Exam Tip

- If a constant of integration can be found then the question will need to give you some extra information
- If this is given then make sure you use it to find the value of c

Exam Papers Practice

Worked example

The graph of $y=f(x)$ passes through the point $(3,-4)$. The gradient function of $f(x)$ is given by $f^{\prime}(x)=3 x^{2}-4 x-4$.

Find $f(x)$.

STEP $1 \quad f^{\prime}(x)$ is already in an integrable form

$$
f^{\prime}(x)=3 x^{2}-4 x-4
$$

STEP 2 Integrate, remembering " $+c$ "

$$
\begin{aligned}
& f(x)=\frac{3 x^{3}}{3}-\frac{4 x^{2}}{2}-4 x+c \\
& f(x)=x^{3}-2 x^{2}-4 x+c
\end{aligned}
$$

STEP 3 Substitute x and y coordinates to find c

$$
f(3)=-4
$$

$\therefore(3)^{3}-2(3)^{2}-4(3)+c=-4$

$$
27-18-12+c=-4
$$

$$
c=-1
$$

$$
\therefore f(x)=x^{3}-2 x^{2}-4 x-1
$$

Exam Papers Practice

Area Under a Curve Basics

What is meant bythe area under a curve?

- The phrase "area under a curve" refers to the area bound ed by
- the graph of $y=f(x)$
- the \boldsymbol{X}-axis
- the verticalline $X=a$
- the vertical line $x=b$
- The exact area under a curve is fo und byevaluating a definite integral
- The graph of $y=f(x)$ could be a straight line
- the use of integration described below would still apply
- but the shape created would be a trapezoid
- so it is easierto use " $A=\frac{1}{2} h(a+b)$ "

What is a definite integral?

$$
\int_{a}^{b} f(x) \mathrm{d} x=\mathrm{F}(b)-\mathrm{F}(a)
$$

- This is known as the Fundamental Theorem of Calculus
- \mathbf{a} and \mathbf{b} are called limits
- a is the lo wer limit
- \mathbf{b} is the upper limit
- $f(x)$ is the integrand
- $\mathrm{F}(x)$ is an antiderivative of $f(x)$
- The constant of integration (" $+c$ ") is not needed in definite integration
- " + c" would appear alongside both $\mathrm{F}(\mathrm{a})$ and $\mathrm{F}(\mathrm{b})$
- subtracting means the " $+\boldsymbol{c}$ "'s cancel

How do If orma definite integral to find the area under a curve?

- The graph of $y=f(x)$ and the X-axis should be obvious bound aries for the area so the key here is in finding \boldsymbol{a} and \boldsymbol{b} - the lower and upper limits of the int egral

STEP 1

Use the given sketch to help lo cate the limits
You mayprefer to plot the graph on your GDC and find the limits from there

STEP 2

Look carefully where the 'left' and 'right' boundaries of the area lie If the bo und aries are vertic al lines, the limits will come directly from their equations Look out for the \boldsymbol{y}-axis being one of the (vertical) boudnaries - in this case the limit (\boldsymbol{X}) will be 0 One, or both, of the limits, could be a root of the equation $f(x)=0$
i.e. where the graph of $y=f(x)$ crosses the X-axis

In this case solve the equation $f(x)=0$ to find the limit(s)
A GDC will solve this equation, either from the graphing screen or the equation solver

STEP 3

The definite integral for finding the area can now be set up in the form
-xan Pa

$$
A=\int_{a}^{b} f(x) \mathrm{d} x
$$

Copyright

4 Exam Papers Practice

- Exam Tip

- Look out forquestions that ask youto find an ind efinite integral in one part (so "+c" needed), then in a later part use the same integral as a definite integral (where " $+\mathbf{c}$ " is not needed)
- Add information to any diagram provided in the question, as well as axes intercepts and values of limits
- Mark and shade the area you're trying to find, and if no diagram is provided, sketch one!

Definite Integrals using GDC

Does my calculator/GDC do definite integrals?

- Modern graphic calculators (and some 'advanced'scientific calculators) have the functionality to evaluate definite integrals
- i.e. theycan calculate the area under a curve (see above)
- If a calculator has a button forevalutaing definite integrals it will look something like

- This maybe a physical button or accessed via anon-screen menu
- Some GDCs may have the ability to find the area under a curve from the graphing screen
- Be careful with any calculator/GDC, they may not produce an exact answer

How do luse my GDC to find definite integrals?

Without graphing first ...

- Once you know the definite integral function your calculator will need three things in orderto evaluate it
- The function to be integrated (int egrand) ($f(x)$)
- The lo wer limit (\boldsymbol{a} from $\boldsymbol{X}=\boldsymbol{a}$)
- The upper limit (b from $x=b$)
- Have a play with the orderin which your calculator expects these to be entered - some do not always work left to right as it appears on screen!

With graphing first ...

- Plot the graph of $y=f(x)$
- Youmay also wish to plot the vertical lines $X=a$ and $X=b$
- make sure your GDC is expecting an " $\boldsymbol{X}=$ " style equation
"Once you have plotted the graphyou need to look for an option regarding "area" or a physical button
- it may appear as the integral symbol(e.g. $\int \mathrm{d} \boldsymbol{X}$)
- your GDC may allow you to select the lower and upper limits by moving a cursor along the curve - however this may not be very accurate
- your GDC may allow you to type the exact limits required from the keypad
- the lower limit would be typed in first
- read anyinformation that appears on screen carefully to make sure

(9) Exam Tip

- When revising for yo ur exams always use your GDC to check any definite integrals you have carried out by hand
- This will ensure you are confid ent using the calculator you plan to take into the exam and should also get you into the habit of using you GDC to check yo ur work, so mething you should do if possible

Worked example

a) Using your GDC to help, or otherwise, sketch the graphs of
$y=x^{4}-2 x^{2}+5$,
$x=1$ and
$x=2$ on the same diagram

Use the 'graph menu on your GOC to plot $y=x^{4}-2 x^{2}+5$. You may then need to change the 'inpu ttype' t_{0} ' $x=$ ' to enter $x=1$ and $x=2$.
Plot the graph on your $G D C$ and sketch the result, ensuring to include all the main properties of each graph.

b)

The area enclosed by the three graphs from part (a) and the \boldsymbol{X}-axis is to be found. Write down an integral that would find this area.

Copyright
(c) 2024 Exam Papers P acc jp
$\left.2 x^{4}-2 x^{2}+5\right) d x$
c) Using your GDC, or otherwise, find the exact area described in part (b).

Give yo ur answer in the form $\frac{a}{b}$ where a and b are integers.

$$
\text { Area }=\int_{1}^{2}\left(x^{4}-2 x^{2}+5\right) d x=\frac{98}{15} \text { square units }
$$

From the graphing screen on our GDC the integral value was given as 6.53333333 -not exact!

