

5.3 Electric Cells

Mark Schemes

Exam Papers Practice

To be used by all students preparing for DP IB Physics HL Students of other boards may also find this useful

The correct answer is C because:

- A charge of 240 C flows through the resistor in a time of 2 minutes = 120 s
- Calculating current:

$$\circ / = \frac{\Delta Q}{\Delta t} = \frac{240}{120} = 2 \text{ A}$$

- Power dissipated P = PR and power is defined as the rate of transfer of energy
 - Therefore, energy $E = P \times t = PR \times t$

o So,
$$1440 = (2)^2 R \times 120$$

o Hence,
$$R = \frac{1440}{(2)^2 \times 120} = \frac{12}{480} = 3 \Omega$$

- The emf of a circuit ∈ = I(R+r) = 9.0 V
 - Therefore, the total resistance in the circuit $(R + r) = \frac{9.0}{I} = \frac{9.0}{2} = \frac{9.0}{2}$

4.5 Ω

• Therefore, since R=3

$$0.3 + r = 4.5$$

• Therefore
$$r = 4.5 - 3 = 1.5 \Omega$$

A is incorrect as	this is the resistance of the resistor and not the internal resistance of the e.m.f.
B is incorrect as	this is the current in the circuit and not the internal resistance of the e.m.f.
D is incorrect as	this is the total resistance in the circuit and not the internal resistance of the e.m.f.

The power dissipated is the energy per time from Power = $\frac{Energy}{Time}$. Look carefully that the units 1440 is measured in J, so to calculate the energy use Energy = Power × Time.

The correct answer is **D** because:

- The electromotive force ε is defined as the work done per unit charge in moving charge from one terminal of the battery to the other
 - o The work, or energy transferred, between terminals is chemical
- The electromotive force can be written as:
 - $\epsilon = \frac{W}{Q}$ such that the energy transferred (or work done) $W = \epsilon Q$
- However, this chemical energy is deliverable as electrical energy to both the load resistance and the internal resistance
- Therefore, εQ is equal to the total energy dissipated in the battery due to the internal resistance as well is externally (the load resistance)

A is incorrect as	the work done around the circuit is not chemical, it is electrical, and is equal to VQ , where V is the terminal potential difference	
B is incorrect as	the work done between the terminals is not electric, it is chemical	
C is incorrect as	the load resistance is usually given the symbol R . εQ is a quantity of energy, not resistance	ctic

Read each of the answer options carefully and don't just jump to a conclusion without considering them all!

The correct answer is A because:

- There are two unknowns, so we must set up two unique simultaneous equations
- The emf $\epsilon = I(R+r) = V + Ir$ where V is the terminal potential difference
 - Therefore, when V = 5.0 V and I = 1.0 A, $\epsilon = 5 + r \text{(equation 1)}$
 - When V = 4.0 V and I = 1.5 A, $\epsilon = 4 + 1.5 r$ (equation 2)
- Equating the two equations to eliminate ε gives:
 - 0.5 + r = 4 + 1.5r
 - 0.5r
 - Therefore, $r = \frac{1}{0.5} = 2.0 \Omega$
- Using this value for rin equation 1 gives:

$$\circ \epsilon = 5 + 2 = 7.0 \text{ V}$$

The internal resistance
$$r=2\Omega$$
 because $l=0.5r$ so, $\frac{1}{0.5}=2.0\Omega$ and not 0.5Ω

C is incorrect as $\epsilon=5+2=7.0\,\mathrm{V}$ and not $\epsilon=5-2=3.0\,\mathrm{V}$

The internal resistance $r=2\Omega$ because $l=0.5r$

So, $\frac{1}{0.5}=2.0\,\Omega$ and not $0.5\,\Omega$

incorrect as $\epsilon=5+2=7.0\,\mathrm{V}$ and not $\epsilon=5-2=3.0\,\mathrm{V}$

If there are **two** unknowns in each question, don't panic! This is a huge flag that you are required to set up **two** simultaneous equations and solve them. In more extended questions, you may even sometimes have **three** unknowns – but as you might expect, this just means you then need to set up **three** unique simultaneous equations and perform a bit more algebra to manipulate and solve them. Anytime you have the same number of unknowns as you have equations – think simultaneous equations!

The incorrect statement is **B** because:

- The lifetime of a cell depends on the current drawn from it, not on the amount of charge it stores (a measure of the cell's capacity)
- A cell's capacity can be measured by drawing a constant current until it is discharged
 - The charge delivered during the time it takes to fully discharge is the cells capacity

A is correct as	capacity can be measured by drawing a constant current from a cell until it is discharged. The area under the corresponding current-time graph, which would be the total charge delivered, is a measure of the cell's capacity. A larger current would reduce the lifetime of the cell, not its capacity	
C is correct as	larger currents discharge cells more quickly, because cells can only deliver a finite amount of charge to a circuit over its lifetime (its capacity)	ctice
D is correct as	the internal resistance of a cell gradually increases over a cell's lifetime, due to several factors, including chemical and structural degradation of the terminals	

The correct answer is A because:

- The cell emf ε= I(R+r)
 - o Therefore, this can be rearranged into the form of a straight line

$$\circ I = \frac{\varepsilon}{R+r} \text{ hence } \frac{1}{I} = \frac{R+r}{\varepsilon} = \frac{R}{\varepsilon} + \frac{r}{\varepsilon}$$

• If y = mx + c, then $\frac{1}{I}$ on the y-axis and R on the x-axis is a straight

line with a gradient equal to $\frac{1}{\varepsilon}$

You should be comfortable, for the Standard Level Diploma Programme, with recognising linear equations and rearranging them so that they match a given graph. The method for this question is sketched out in more detail below:

$$\varepsilon = I(R+r)$$

$$I = \frac{\varepsilon}{R+r}$$

$$\frac{1}{I} = \frac{R+r}{\varepsilon} = \frac{R}{\varepsilon} + \frac{r}{\varepsilon}$$

$$\frac{1}{I} = \frac{1}{\varepsilon}R + \frac{r}{\varepsilon}$$

- · Applying Kirchhoff's loop law, starting at the negative terminal of the primary cell and moving round the circuit anticlockwise:
 - \circ $\Sigma V = 0 = 10 4/ 2 4/$

The correct answer is **D** because:

- s Practice o Therefore, 0 = 8 - 8/
- This means statement C is incorrect
- The power of an emf, ε is given by P = εl
 - Therefore, the power generated by the primary battery $P = 10 \times 1$ = 10 W
 - The power stored in the secondary battery P = 2 x 1 = 2 W
- This means statement B is incorrect, and:
 - Since $\frac{2}{10}$ = 0.2 = 20%, statement D is correct

A is incorrect as	primary cells are not rechargeable, only secondary cells are charged from the primary cell
B is incorrect as	this is not true. The power generated in the primary cell is not equal to the power stored in the secondary cell
C is incorrect as	the current in the circuit is 1 A as shown

You should remember that primary cells can only be used once (until it runs out). Therefore, statement A is incorrect. Secondary batteries are rechargeable and can be reused.

7

The incorrect statement is C because:

- An ideal battery is one for which the internal resistance is zero
- Hence, since ε = I(R+r) = V+Ir, where V is the terminal potential difference, I is the current and I is the internal resistance,
 - o If the internal resistance is zero, then the terminal potential difference (i.e., that which is measurable) would be exactly equal to the emf ϵ

A is correct as	non-ideal batteries have internal resistance. Hence, the terminal pd $V=\epsilon-lr$, and so is always less than the emf ϵ
B is correct as	$V = \epsilon - Ir$. Hence, if the current $I = 0$, then $V = \epsilon$
D is correct as	the terminal potential difference for non- ideal batteries decreases with time as current is drawn from it, due to the battery's internal resistance

The incorrect answer is C because:

The internal resistance of a cell must have units equivalent to the ohm,

0

$$\circ \quad [R] = \Omega = \frac{[V]}{[I]} = V A^{-1}$$

- o Therefore, option A is correct
- The Volt, V is defined by the equation $V = \frac{W}{C}$:

$$\circ [V] = V = \frac{[W]}{[q]} = JC^{-1}$$

- o Since [Q] = [/][t], then C = As
- Substituting this into $\Omega = VA^{-1} = (JC^{-1})A^{-1} = J(A^{-1}s^{-1})A^{-1}$
- Therefore, $\Omega = J s^{-1} A^{-2}$ so option B is correct
- The Joule, J is defined by the equation W = Fd:
 - o [W] = [F][d] = N m
 - Since [F] = [m][a] then [F] = N = kg m s⁻²
 - Substituting this into $[W] = J = N m = (kg m s^{-2}) m = kg m^2 s^{-2}$
 - Therefore, $\Omega = (kg m^2 s^{-2}) s^{-1} A^{-2} = kg m^2 A^{-2} s^{-3}$
- Therefore, option D is correct
 - o So, option C cannot be units for internal resistance

Make sure you read this question carefully. It says incorrect and not correct. Do not just start and then assume A is correct.

The correct answer is **B** because:

- The terminal potential difference V_X and V_Y can be written in terms of the emf ϵ :
 - o Treating the circuit as a potential divider, with the 3 Ω resistor in series with the internal resistance $r = 0.5 \Omega$, then $V_{\chi} = \epsilon \times \frac{R}{R} = 0.5 \Omega$

$$\frac{1.5 \times 3}{3 + 0.5} = \frac{9}{7}$$

- Similarly, $V_Y = \epsilon \times \frac{R}{R+r} = \frac{3 \times 1.5}{3+2} = \frac{9}{10}$
- Therefore, $V_X > V_Y$ since the denominator is smaller for V_X
- The power dissipated across the resistor, P_X and P_Y, can be written in terms of the terminal potential differences V_X and V_Y .

$$\circ P_X = \frac{V_X^2}{R} = \frac{V_X^2}{3}$$

$$\circ P_Y = \frac{V_Y^2}{R} = \frac{V_Y^2}{3}$$

- Since V_X> V_Y, P_X> P_Y
- o Therefore, row B is correct

A is incorrect as the equation for power, P = IV then if V is greater then Pwill also be greater.

> both the power and potential difference are greater in X than in Y, as $V_X > V_Y$ as $\frac{9}{7} >$

C is incorrect as

and consider the equation for power, P = IVthen if Vis greater then Pwill also be greater.

D is correct as	the potential difference is greater in X than in Y, as $V_X > V_Y$ as $\frac{9}{7} > \frac{9}{10}$
------------------------	--

The correct answer is **D** because:

- The terminal potential difference $V = \epsilon lr$
 - If the resistance R decreases, then current in the circuit increases
 - Therefore, the terminal potential difference V decreases as well
 - The power dissipated in the cell (that is, across the internal resistance)

 $P = l^2 r$, which therefore becomes large

- Hence, statement (1) is correct
- If the resistance R is made very large, this causes a very small current in the circuit
 - The power supplied by the cell $P = \epsilon I = l^2(R + r) = l^2R + l^2r$

 - Therefore, most of the power supplied by the cell is dissipated across the resistor R
- Hence, statement (2) is correct
- If the resistance of R is made very small, then the current in the circuit will increase
 - Hence, the charge delivered by the cell (its capacity) will rapidly deplete, resulting in a shorter lifetime

Walking through each step in this question is useful practise for you to understand the difference components of a circuit, in terms of the external (or load) resistance R and the internal resistance r. Imagining these as two distinct components, over which power supplied by the emf of the cell is dissipated, is very good exam technique.