

Boost your performance and confidence with these topic-based exam questions

Practice questions created by actual examiners and assessment experts

Detailed mark scheme

Suitable for all boards

Designed to test your ability and thoroughly prepare you

IB Chemistry: SL

5.3 Bond Enthalpy

CHEMISTRY

SL

5.3 Bond Enthalpy

Question Paper

Course	DP IB Chemistry
Section	5. Energetics / Thermochemistry
Topic	5.3 Bond Enthalpy
Difficulty	Hard

EXAM PAPERS PRACTICE

Time allowed: 20

Score: /10

Percentage: /100

The diagram shows the skeletal formula of cyclobutane.

The enthalpy change of formation of cyclobutane is $+75.1 \text{ kJ mol}^{-1}$, and the enthalpy change of atomisation of graphite is $+712 \text{ kJ mol}^{-1}$.

The bond enthalpy of C-H is 414 kJ mol⁻¹ and of H-H is 436 kJ mol⁻¹.

What is the average bond enthalpy of the C-C bond in cyclobutane?

A. 712 -436 +2(414) +
$$\frac{75.1}{4}$$

C.
$$712 + 436 - 2(414) - \frac{75.1}{4}$$

[1 mark]

Question 2 PAPERS PRACTICE

Butane can be produced by the hydrogenation of buta-1,3-diene.

$$C H (g) + 2H (g) \rightarrow C H (g)$$

$$\Delta H = -248 \text{ kJ mol}^{-1}$$

Bond	C-C	C-H	Н-Н
Mean bond enthalpy / kJ mol ⁻¹	346	414	436

Using the information, which calculation shows the bond enthalpy for the C=C bond in buta-1,3-diene?

A.
$$-248 - (2 \times 436) + (2 \times 346) + (4 \times 414)$$

C.
$$(2 \times 346) + (4 \times 414) + 248 - (2 \times 436)$$

[1 mark]

Question 3

In the gas phase, phosphorus pentachloride can be thermally decomposed into gaseous phosphorus trichloride and chlorine. $PCl_5 \rightarrow PCl_3 + Cl_2$

The table below gives the relevant bond energies found in these compounds

bond	bond energy / kJ mol ⁻¹	
P–Cl (in both chlorides)	Х	
CI-CI	У	

What is the enthalpy change in the decomposition of the reaction?

A. y - 2x

B. 2x -y

C.8x+y

D. x +y

[1 mark]

EXAM PAPERS PRACTICE

Question 4

Which equation correctly shows how the bond energy for the covalent bond Y–Z can be calculated by dividing ΔH by n?

A.
$$nYZ(g) \rightarrow nY(g) + \frac{n}{2} Z_2(g)$$

B.
$$Z(g) + YZ_{n-1}(g) \rightarrow YZ_n(g)$$

C.
$$2YZ_ng) \rightarrow 2YZ_{n-1}(g) + Y_2(g)$$

D.
$$YZ_n(g) \rightarrow Y(g) + nZ(g)$$

Ultraviolet radiation is split into three regions:

- UV A (wavelength 400 320 nm)
- UV B (wavelength 320 280 nm)
- UV C (wavelength < 280 nm)

High energy photons are present in the solar spectrum at high altitude. The maximum wavelength of a photon that has enough energy to break the O=O bond in oxygen is 240 nm, which is in the UV C region of ultraviolet radiation.. The energy per mole required to break an O=O bond can be calculated using the following equation:

Using the supplementary equations $c = v\lambda$ and E = hv, which is the correct calculation to determine the bond energy of an O=O in kJ mol ?⁻¹

Avogadro's constant = 6.02×10^{23} Planck's constant = 6.63×10^{-34} Js Speed of light = 3.00×10^{8} ms⁻¹

A.
$$\frac{6.63 \times 3.00 \times 6.02 \times 10}{2.4}$$

C.
$$\frac{6.63 \times 3.00 \times 6.02 \times 10^{-3}}{2.4}$$

D.
$$\frac{6.02 \times 2.4 \times 10^{42}}{6.63 \times 3.00}$$

The equations to form methane and propane from their gaseous atoms are:

C (g) + 4H (g)
$$\rightarrow$$
 CH₄(g) Δ H_r = -1656 kJ mol⁻¹
3C (g) + 8H (g) \rightarrow C₃H₈(g) Δ H_r = -4004 kJ mol⁻¹

What is the bond enthalpy of a C-C bond?

A.
$$\frac{-4004 + 2 \times (1656)}{3}$$

B. 2002 - 1656

C. 1656 - 2002

D.
$$\frac{-4004 - 2 \times (1656)}{3}$$

[1 mark]

EXAM PAPERS PRACTICE

Question 7

Water has two different bond enthalpies for the two O-H bonds that it contains:

$$H_2O (g) \rightarrow H (g) + OH (g)$$
 $\Delta H = +502 \text{ kJ mol}^{-1}$
 $OH (g) \rightarrow H (g) + O (g)$ $\Delta H = +427 \text{ kJ mol}^{-1}$

The average O-H bond enthalpy from an accepted data table is 463 kJ mol⁻¹.

Which calculation correctly shows the percentage difference between the average O-H bond enthalpy of water and the data table average bond enthalpy value?

A.
$$100 \div \left(\frac{502 + 427}{2 \times 463} - 1 \right)$$

B.
$$100 \times \left(\frac{502 + 427}{2 \times 463} - 1 \right)$$

C.
$$100 \times \left(\frac{2 \times 463}{502 + 427} - 1 \right)$$

$$D.100 \times \left(\begin{array}{c} 502 + 427 \\ \hline 2 \times 436 \end{array} - 1 \right)$$

[1 mark]

Question 8

Some of the reactions involved in the formation and depletion of ozone are:

 $1.0_2 \rightarrow 20^{\bullet}$

II.
$$O_2 + O \rightarrow O_3$$
III. $O_3 + O \rightarrow 2O_2$
PAPERS PRACTICE

Which reactions are exothermic?

A. I and II only

B. I and III only

C. II and III only

D. I, II and III

Which of the following statements about the average bond enthalpy of the halogens are correct?

- I. Fluorine has the highest average bond enthalpy
- II. Average bond enthalpy generally decreases as the size of the atoms increases
- III. In general, increased shielding results in a lower bond enthalpy
- A. I and II only
- B. I and III only
- C. II and III only
- D. I, II and III

[1 mark]

Question 10

What is the correct order to show the decreasing strength of the F-H, N-H and O-H bonds?

- A. N-H > O-H > F-H
- B. O-H > N-H > F-H
- C. F-H > N-H > O-H
- D. F-H > O-H > N-H

