

5.3 Bond Enthalpy

Mark Schemes

Exam Papers Practice

To be used by all students preparing for DP IB Chemistry HL Students of other boards may also find this useful

The correct answer is C

- Use the formula ΔH = Σ bonds broken Σ bonds formed
- There are 6 N-F bonds in the product because each molecule of NF₃ contains three 3 N-F bonds and there are two molecules formed
- Substituting into the formula

$$\Delta H = \sum (945 + (3 \times 159)) - \sum (6 \times N - F) = -246$$

$$-(6 \times N - F) = -246 - (945 + (3 \times 159))$$

$$+(6 \times N - F) = +246 + (945 + (3 \times 159))$$

$$(N - F) = \frac{+246 + (945 + (3 \times 159))}{6}$$

Exam tip: Always use brackets to separate the bond energy terms from the mathematical operations. It is very easy to get your signs wrong if you don't do this

Exam Papers Practice

The correct answer is C because:

- The standard enthalpy change of combustion (ΔH_c^{Θ}) is the enthalpy change when one mole of a substance is burnt in excess oxygen under standard conditions. The reactants and products must be in their standard states
- Enthalpy changes of combustion are always exothermic
- Equation: ΔH = ∑bonds broken ∑bonds formed
- Bonds broken:
 - This is endothermic, and therefore the sum of the bonds broken is positive

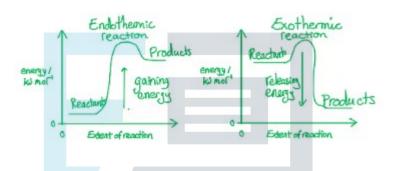
$$\circ \ 2 \times (C-H) = 2 \times a = 2a$$

$$0.5 \times (0=0) = 2\frac{1}{2} \times c = 2\frac{1}{2}c$$

- Sum of bonds broken = (2a+b+2½c)
- Bonds formed:
 - o This is exothermic, and therefore the sum of the bonds formed is negative

$$0.2 \times (O-H) = e \times 2 = 2e$$

$$4 \times (C=O) = d \times 4 = 4d$$


•
$$\Delta H = \sum bonds \ broken - \sum bonds \ formed$$

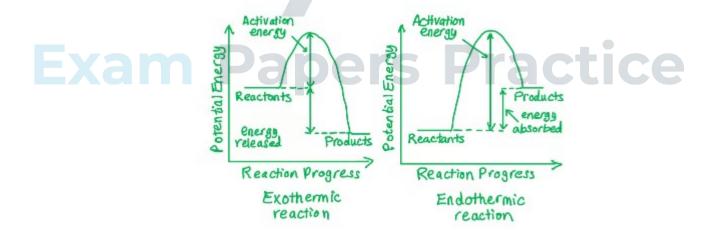
Careful counting of bonds and the sign of the energy change are really important in getting these type of problems right

The correct answer is A because:

- The reaction R → S is endothermic as ΔH is positive, so it is gaining energy
- The reaction S → T is exothermic as ΔH is negative, so it is releasing energy
- The energy profile diagrams for exothermic and endothermic reactions are shown below:

- When the two reactions are combined the energy increases then decreases as seen in option A
- S can be isolated so it is an intermediate; this is shown as a small dip in energy.

The correct answer is C because:


- The activation energy for the reverse endothermic reaction is the energy needed for the products to be converted back into the reactants
- This is the energy from the products to the peak of the 'hump' in the line

A is incorrect as	this does not correspond to activation energy
B is incorrect as	this is the activation energy for the forward reaction (reactants → products)
D is incorrect as	this is the ΔH of the forward reaction

The correct answer is A because:

- The activation energy is minimum energy particles must possess to break bonds to start a chemical reaction
 - o This is the energy from the reactants to the 'hump' in the line

o Therefore, E3 - E2 for this question

B is incorrect as	this is the ΔH of the forward reaction
C & D are	these do not correspond to the
incorrect as	activation energy

The correct answer is **D** because:

- · Combustion is an exothermic process, even when it is incomplete
- Use the formula $\Delta H_r = \Sigma$ bonds broken Σ bonds formed
- · Bonds broken:

$$\circ$$
 (3 x C-H) + (C-O) + (O-H) + (O=O)

- · Bonds formed:
 - \circ (C=O) + (4 x O-H)
 - \circ (804) + (4 x 463)
- ΔH_c = Σ bonds broken Σ bonds formed

$$= [(3 \times 414) + (358) + (463) + (498)] - [(804) + (4 \times 463)]$$

$$= -95 \, kJ \, mol^{-1}$$

Ais	the calculation only accounts for each
incorrect	type of bond, not how many there are of
as	each bond

B is this calculation is using the wrong incorrect equation, it is using

 Σ bonds formed - Σ bonds broken

C is incorrect mistaken for a CH bond in the calculation

Exam tip: Draw out the displayed formulae of all the chemicals involved in the reaction and tick them off as you use them - that way you don't miss any bonds

The correct answer is B because:

- Statements I and III are true
 - A bond enthalpy may be inaccurate when compared to data tables because it is not an average value
 - Bond enthalpies may be inaccurate as they do not account for intermolecular forces
- Statement II is false
 - Average bond enthalpies are only valid for gases

statement II is not correct

The correct answer is **B** because:

- The question states that the graph must show the reaction that would proceed most rapidly
- All the reactions are carried out at the same temperature
- This means that we are looking for the graph with the lowest activation energy (either graph B or D)
- An exothermic reaction will have a negative enthalpy value as the chemical reaction loses energy to the surroundings as reactants form products (graph B)

A is incorrect as	it has higher activation energy than B
C & D are incorrect as	they are both endothermic reactions and produce a positive entropy change

The correct answer is **B** because:

- · Bond breaking requires energy and is, therefore, endothermic
- · Bond formation releases energy and is, therefore, exothermic

A , C & D are	they have at least one incorrect
incorrect as	statement about bond breaking
	and / or bond formation

The correct answer is D because:

- Equation II is the reaction where oxygen in the upper atmosphere undergoes homolytic fission to form two oxygen free radicals
- Equation III shows the exothermic step of oxygen free radicals reacting with another oxygen molecule to form ozone
- Equation I is the reaction of an ozone molecule to form an oxygen molecule and an oxygen free radical
- All three reactions are required to maintain the concentration of ozone in the upper atmosphere

A , B & C are	all three reactions are involved in
incorrect as	maintaining the concentration of
	ozone in the upper atmosphere