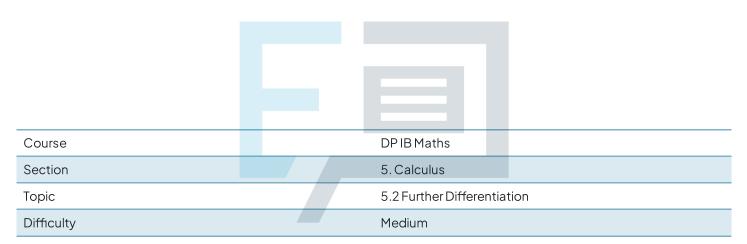


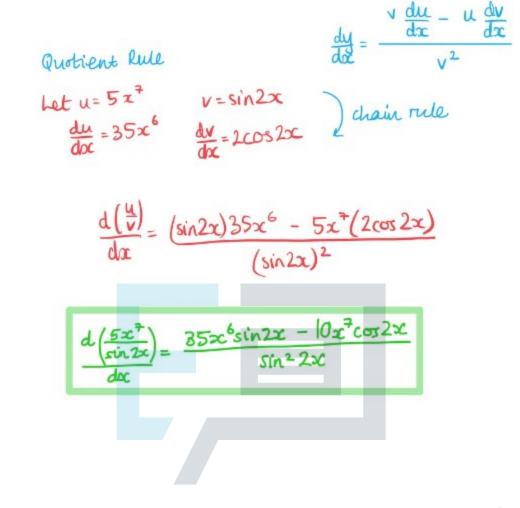
5.2 Further Differentiation

Mark Schemes

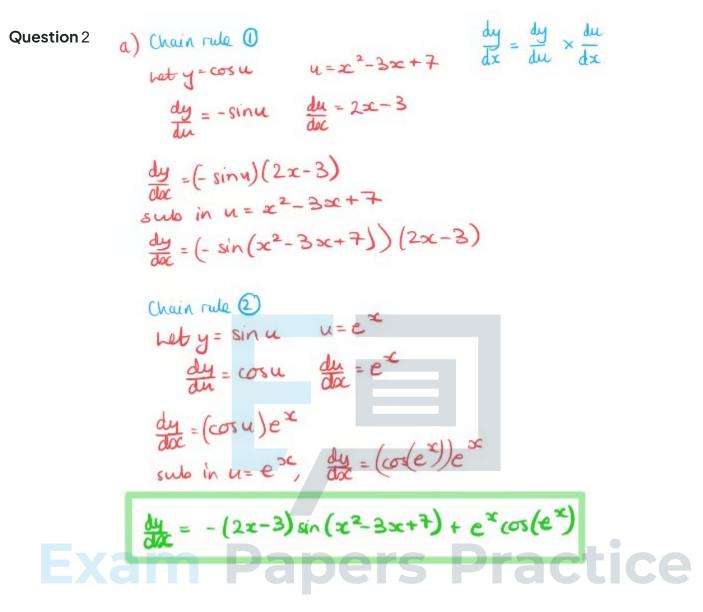


Exam Papers Practice

To be used by all students preparing for DP IB Maths AA SL Students of other boards may also find this useful



Exam Papers Practice



b) Method 1: Chain Rule

$$y = \ln u$$
 $u = 2x^{3}$
 $dy = dy \times du$
 $dy = du \times dx$
 $dy = \frac{1}{u}$ $du = 6x^{2}$
 $dy = \frac{1}{u} (6x^{2})$
sub $u = 2x^{3}$
 $dy = \frac{1}{2x^{3}} (6x^{2}) = \frac{3}{x}$
OR Method 2: Simplify using leg laws
 $y = \ln (2x^{3}) = \ln 2 + \ln x^{3} = \ln 2 + 3\ln x$
 $dy = \frac{3}{x}$

Question 3 a) Product rule Ders
$$dy = u dv + v dv$$
 Ce
Let $u = 4\cos x - 3\sin x$ $v = e^{3x-5}$
 $\frac{du}{dx} = -4\sin x - 3\cos x$ $\frac{dv}{dx} = 3e^{3x-5}$
 $\frac{d(uv)}{dx} = (4\cos x - 3\sin x)3e^{3x-5} + e^{3x-5}(-4\sin x - 3\cos x))$
 $= e^{3x-5}(12\cos x - 9\sin x - 4\sin x - 3\cos x)$
 $= e^{3x-5}(9\cos x - 13\sin x)$

b)
hot
$$u = x^{3} + 4x^{2} + 7$$
 $v = \ln x$
 $\frac{du}{dx} = u \frac{du}{du} + v \frac{du}{dv}$
 $\frac{du}{dx} = 3x^{2} - 8x$
 $\frac{du}{dx} = \frac{1}{x}$
 $\frac{d(uv)}{dx} = (\frac{x^{3} - 4x^{2} + 7}{x}) + (\ln x)(3x^{2} - 8x)$
 $= \frac{x^{2} - 4x + \frac{3}{x}}{x} + (\ln x)(3x^{2} - 8x)$
 $= \frac{x^{2} - 4x + \frac{3}{x}}{x} + (\ln x)(3x^{2} - 8x)$
 $\frac{du}{dx} = \frac{du}{dx} \times \frac{du}{dx}$
 $\frac{du}{dx} = \frac{d(e^{u})}{du} \times \frac{du}{dx}$ chain rule
Example $e^{u} \times (3)$ rs Practice
 $= -3e^{-3x}$
 $\frac{du}{dx} = -3e^{-3x} + \frac{1}{x}c$
Sub $x = 1$
 $\frac{du}{dx} = -3e^{-3}$
 $\frac{du}{dx} = -3e^{-3}$
 $\frac{du}{dx} = -3e^{-3} = -1.176$ (3dp)

Page 4

Question 5

Let
$$y = e^{u}$$
 $u = 3x^{2} + 5x - 2$ $dy = dy \times \frac{du}{dx}$
 $\frac{dy}{du} = e^{u}$ $\frac{du}{dx} = 6x + 5$ (hain rule
 $\frac{dy}{dx} = (6x + 5)e^{u}$ (hain rule
 $= (6x + 5)e^{3x^{2} + 5x - 2}$
At $x = -2$
 $\frac{dy}{dx} = (6(-2) + 5)e^{3(-2)^{2} + 5(-2) - 2}$
 $\frac{dy}{dx} = (6(-2) + 5)e^{3(-2)^{2} + 5(-2) - 2}$

At
$$x = -2$$

 $dy_{dx} = (6(-2) + 5)e^{3(-2)^2 + 5(-2) - 2}$
 $= -7e^{0} = -7 = m$
 $y - (1) = -7(x - (-2))$
 $y - 1 = -7x - 14$
 $y + 7x + 13 = 0$

Exam Papers Practice

 $f(2) = \frac{g(2)}{f(2)}$ f(2) = -4point: (2,-4) Quotient rule $y = \frac{u}{v} \longrightarrow \frac{dy}{dx} = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{u^2}$ (in formula booklet) u = g(2) = 4 v = h(2) = -1 $\frac{du}{dx} = g'(2) = 0$ $\frac{dv}{dx} = h'(2) = 2$ $f'(2) = \frac{(-1)(0)}{(-1)^2}$ f'(2) = -8Sub (2,-4) and m= - 8 into y-y. = m(2e-2e,). y+4 = -8(x-2)y = - 8x + 16 - 4 **Practice** 4=

Question7

a) Differenciate once

$$\frac{dy}{dx} = 3x^2 - 12$$

$$\frac{d^2y}{dx^2} = 6x$$

b) find x at the stationary points

$$dy = 3x^{2} - 12 = 0$$

$$dx = x^{2} = 4$$

$$x = \pm 2 \longrightarrow \frac{dy}{dx} = 0 \text{ at local min}$$

$$8 \text{ local max.}$$

classify stahlmary points
At
$$x = 2$$
 $d_{2u}^{2} = b(2) = 12 > 0$... local
At $x = -2$ $d_{2y}^{2} = b(-2) = -12 < 0$... local
Max
 $y = 2^{3} - 12(2) + 7 = -9$
LOCAL
MINIMUM: $(2, -9)$
Received and $(2, -9)$
At $u = x^{2} - 1$ $v = ln(x + 3)$
 $d_{dx} = u \frac{d_{y}}{d_{dx}} + v \frac{d_{y}}{d_{y}}$
Lot $u = x^{2} - 1$ $v = ln(x + 3)$
 $d_{dx} = 2x$ $d_{y}^{2} = \frac{1}{x + 3}$
 $f'(x) = (\frac{x^{2} - 1}{x + 3}) + (ln(x + 3)/2x)$

b) At A, the curve intersects the x axis, so y=f(x)=0 $(x^2-1)\ln(x+3)=0$ $(x+1)(x-1)\ln(x+3)=0$ un 1=0 x+3=1 $\infty = -2$ x=-1,1 A is the most negative paint of intersection, : A(-2, 0) c) $y-y_1 = m(x-x_1)$ when x = -2 **be is Practice** $m = f'(x) = \frac{(-2)^2 - 1}{(-2) + 3} + 2(-2) \ln(-2 + 3)$ $= -4\ln|+3 = 3$ Sub in $x_1 = -2$, $y_1 = 0$ and m = 3y-(0) = 3(x-(-2))y = 3x + 6

Question 9 a) Product rule (in formula booklet)

$$y = uv \longrightarrow du = u dv + v du$$

$$u = x^{2} \qquad v = e^{x}$$

$$du = 2x \qquad dv = e^{x}$$

$$f'(x) = x^{2}e^{x} + 2xe^{x}$$
b) Product rule
$$y = uv \implies du = u dv + v du$$

$$f'(x) = x^{2}e^{x} + 2xe^{x}$$

$$f'(x) = e^{x}(x^{2} + 2x)$$
Example 2 a period 2 + 2 x actice

$$du = e^{x} \qquad dv = 2x + 2$$

$$f'(x) = e^{x}(x^{2} + 2x)$$

$$f'(x) = e^{x}(x^{2} + 2x)$$

$$f''(x) = e^{x}(x^{2} + 4x + 2)$$

For more help visit our website www.exampaperspractice.co.uk

Page 9

c) Points of inflection occur when f"(x)=0. $0 = e^{\chi} (\chi^2 + 4\chi + 2)$ $0 = \varkappa^2 + 4\varkappa + 2$ Quadratic formula $\varkappa = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ (in formula booklet) $\kappa = \frac{-(4) \pm \sqrt{(4)^2 - 4(1)(2)}}{2(1)}$ $x = \frac{-4 \pm \sqrt{8}}{2}$ $\chi = \frac{1}{24} \pm \chi \sqrt{2}$ x = -2 ± 52 apers Practice

$$\lim_{x \to -2} x^2 e^x = f(-2) = \frac{4}{e^2}$$

$$\lim_{x \to -2} x^2 e^x = f(-2) = 0.54134...$$

$$\lim_{x \to -2} x^2 e^x = f(-2) \quad 0.541$$

Question 10

a) Graph f(x) on your GOL and count the number of points the gradient is
0 in the given domain.
3 points

b) Chain rule

$$y = g(u), \text{ where } u = f(x)$$

$$\frac{dy}{dx} = \frac{dy}{dx} \times \frac{du}{dx} \quad (n \text{ formula booklet})$$

$$u = 2 \cos x \quad y = 2e^{u}$$

$$\frac{dy}{dx} = -2 \sin x \quad \frac{dy}{dy} = 2e^{u}$$

$$\frac{dy}{dx} = 2e^{u}$$

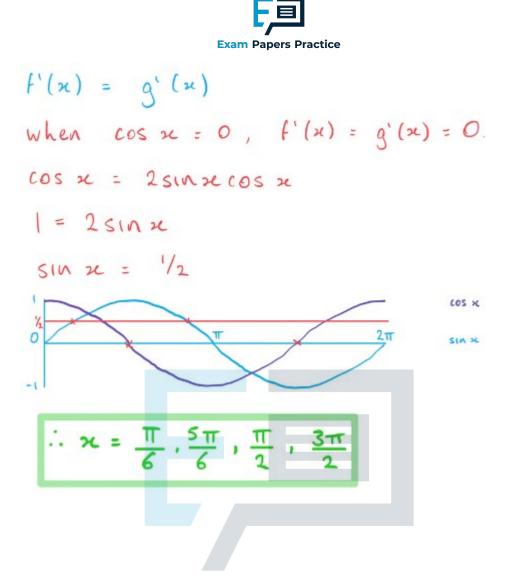
c)
$$f'(x) := -4 \sin x e^{2\cos x}$$

Sub $x = \frac{3\pi}{2}$ into $f'(x)$.
 $f'(\frac{3\pi}{2}) := -4 \sin(\frac{3\pi}{2})e^{2\cos(\frac{\pi}{2})}$
 $f'(\frac{3\pi}{2}) := -4(-1)e^{2(0)}$
 $f'(\frac{3\pi}{2}) := 4$
d) $f(x)$ has 3 stationary points in
the given domain $(-\pi, 0, \pi)$.
 $f(2x)$ has 5 stationary points in
the given domain $(-\pi, -\pi/2, 0, \pi/2, \pi)$
 \therefore rule : $2k + 1$
Question 11 Derivative of $\sin x$ (in formula booklet)
 $f(x) := \sin x \longrightarrow f'(x) : \cos x$
(hain rule

$$g(x) = \sin^2 x$$

.

 $g(x) = (sin x)^2 \longrightarrow g'(x) = 2sin x cos x$



Exam Papers Practice