

5.2 Integration

Question Paper

Exam Papers Practice

To be used by all students preparing for DP IB Maths AI SL Students of other boards may also find this useful

Question 1a

A curve y = f(x) passes through point A(4,2) and has a gradient of f'(x) = 5x - 2.

Find the gradient of the curve at point A.

[2 marks]

Question 1b

Find the equation of the tangent to the curve at point $\boldsymbol{A}.$

Give your answer in the form y = mx + c.

Question 2a

A point P(3,8) lies on the curve y = f(x) that has a gradient of $f'(x) = -2x^2 + 11$.

Find the gradient of the curve at point $P. \label{eq:point}$

Question 2b

Find the equation of the tangent to the curve at point $P. \label{eq:point}$

Give your answer in the form y = mx + c.

[2 marks]

Page 2

Question 3a

The following table shows the x and y coordinates of five points that lie on a curve y = f(x).

X	0	0.25	0.5	0.75	1
y = f(x)	1	2.25	4	6.25	9

Estimate the area under the curve over the interval $0 \le x \le 1$.

Question 3b

The equation of the curve was found to be $y = (2x + 1)^2$.

Find the exact value of the area under the curve over the interval $0 \le x \le 1$.

[2 marks]

Question 3c

Find the percentage error between the estimation in part (a) and the exact value in part (b). Provide a reason for the difference.

Question 4a

The following diagram shows an arch that is 4.5 m tall and 3 m wide. The arch crosses the x-axis at the origin, O, and at point P, and its vertex is at point V. The arch may be represented by a curve with an equation of the form y = x(ax + 6), where all units are measured in metres.

Question 4b

Find the cross-sectional area under the arch.

[2 marks]

Question 5a

The diagram below shows a part of the curve $y = -4x^2 + px + q$. Points A and B represent the x-intercepts, point V (2.5,6) represents the vertex of the curve, and the shaded region R represents the area between the curve and the x-axis.

y

Find the values of *p* and *q*.

Question 5b

Find the coordinates of points \boldsymbol{A} and $\boldsymbol{B}.$

[4 marks]

Question 5c

Find the area of region R.

[2 marks]

Question 6a

The following diagram shows part of the graph of f(x) = (5 - 2x)(2 + 3x), $x \in R$. The shaded region R is bounded by the x-axis, the y-axis and the graph of f.

Write down an integral for the area of region $R \,$

Question 6b

Find the area of region R.

[1mark]

Question 6c

The three points A(0,0), B(4,h) and C(9,0) define the vertices of a triangle.

Find the value of h, the y-coordinate of B, given that the area of the triangle is equal to the area of region R.

[2 marks]

Exam Papers Practice

Question 7a

A rice farm sells x kg of rice every week.

It is known that $\frac{dP}{dx} = -0.02x + 6$, $x \ge 0$, where P is the weekly profit, in dollars (\$), from the sale of x kg of rice.

Find the amount of rice, in kg, that should be sold each week to maximise the profit.

[3 marks]

Question 7b

The profit from selling 250 kg of rice is \$480.

Find P(x).

[5 marks]

Question 8a

A paint company sells *x* hundred of litres of paint every week. It is known that $\frac{dP}{dx} = -1.9x + 145$, $x \ge 0$, where P is the weekly profit, in euros (e), from the sale of *x* hundred litres of paint.

Find the number of litres that should be sold each week to maximise the profit.

[3 marks]

Question 8b

The profit from selling 7000 litres of paint is ${\displaystyle { { \in 5000 } } }.$

Find P(x).

[5 marks]

Question 9a

A river has a cross-sectional area shown by the shaded region of the diagram below, where the x and y values are in metres. The riverbed (the curved part of the region shown) has an equation of the form $y = q(x - 6)^2$. Point O is the origin, and points O,A,B and C are the vertices of a rectangle. Point V, the deepest point of the riverbed, is situated on the x-axis.

Question 9b

 ${\sf Determine}\,{\sf the}\,{\sf value}\,{\sf of}\,q.$

Question 9c

Find the cross-sectional area of the riverbed.

[3 marks]

Question 10a

A trough has a cross-sectional area shown by the shaded region of the diagram below, where the x and y values are in centimetres. The curved bottom of the trough has an equation in the form $y = r(x - 15)^2$. Point O is the origin, and points O,A,B and C are the vertices of a rectangle. Point V, the deepest point of the trough, is situated on the x-axis.

Determine the value of r.

Question 10b

Find the cross-sectional area of the trough.

[4 marks]

