

5.2 Hess's Law

Mark Schemes

Exam Papers Practice

To be used by all students preparing for DP IB Chemistry HL Students of other boards may also find this useful

The correct answer is **B** because:

- The standard enthalpy of formation (ΔH_f^Θ) is the enthalpy change when one mole of a compound is formed from its elements under standard conditions. The reactants and products must be in their standard states.
- For elements in the standard state, the enthalpy of formation is zero
 Therefore, O₂ is zero
- Equation; $\Delta H = \sum \Delta H_f(products) \sum \Delta H_f(reactants)$
- Known quantities:
 - Reactants; 4NH₃ = (4 × (-46.1)), 5O₂ = 0
 - o Products; $4NO = ((4 \times 90.3), 6H_2O = (6 \times (-241.8))$
- · Substitution into the equation:
 - \circ $\Delta H = ((4 \times 90.3) + (6 \times (-241.8)) (4 \times (-46.1))$

2

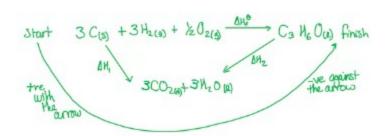
The correct answer is A

Practice

- The standard enthalpy of formation (ΔH_f^Θ) is the enthalpy change when one mole of a compound is formed from its elements under standard conditions.
 - The reactants and products must be in their standard states.
- Elements in the standard state have an ΔH_f of zero; therefore, C and Ti are zero
- Equation; ∆H = ∑ ∆H_f(products) ∑ ∆H_f(reactants)
- · Known quantities:
 - Reactants; TiO₂ = -890, 2C = (2 x 0)
 - Products; 2CO = (2 x -110.5), Ti = 0
- Substitution into the equation:
 - $\Delta H = -221 (-890) = -221 + 890 = +669 \text{ kJ mol}^{-1}$

The correct answer is **B** because:

 The standard enthalpy of formation (ΔH_f^Θ) is the enthalpy change when one mole of a compound is formed from its elements under standard conditions.


The reactants and products must be in their standard states.

- Elements in the standard state have an of zero; therefore, O2 is zero
- Equation; C₂H₅OH(I) + 3O₂(g) → 2CO₂(g) + 3H₂O(I)
- Formula: $\Delta H = \sum \Delta H_f(products) \sum \Delta H_f(reactants)$
- Known quantities:
 - Products; 2CO₂ = (2 × a), 3H₂O = (3 × b)
 - Reactants; C₂H₅OH = c, 3O₂ = (3 x 0)
- · Substitution into the equation:
 - $\circ \Delta H = 2a + 3b c \, kJ \, mol^{-1}$

4

The correct answer is **B** because:

- Hess's law states that the overall enthalpy change will be the same regardless of the route taken
- Draw the cycle to make it easier to see the processes

- ΔH₁ is made from two components, the combustion of carbon(x) x 3 moles, and the combustion of hydrogen gas(y) x 3 moles
 - \circ $\Delta H_1 = 3x + 3y$
- ΔH₂ is subtracted because the enthalpy change is in the opposite direction to the arrow
 - \circ $\Delta H_2 = Z$
- Calculate ∆H_f
 - $O \Delta H_f = \Delta H_1 \Delta H_2$
 - \circ $\Delta H_f = 3x + 3y z$

The correct answer is C because:

- The elements that are missing from the Hess cycle need to be in their standard states
 - Carbon is monoatomic and solid: C(s)
 - Hydrogen is diatomic and gaseous: H₂ (g)
 - Oxygen is diatomic and gaseous: O₂ (g)
 - C(s) + H₂(g) + O₂(g)
- The elements also need to balance the two equations:
 - Elements → C₂H₄(g) + 3O₂(g)

A is incorrect as	the carbon is shown as gaseous
B is incorrect as	the elements are correct but they are not balanced for the cycle
D is incorrect as	the carbon is shown as diatomic

The correct answer is **B** because:

- The enthalpy of combustion is the energy required to burn / combust one mole of a substance completely in oxygen
 - o Therefore, only arrow Prepresents the enthalpy of combustion
- The enthalpy of formation is the energy required to form one mole of a compound from its elements in their standard states
 - o Therefore, only arrow Qrepresents the enthalpy of formation
- The enthalpy of reaction is the enthalpy change when reactants in their standard states change to products in their standard states
 - o This can be true for any arrow in the diagram

A is incorrect as	arrows Rand S represents the enthalpy of reaction not combustion because the enthalpy of combustion is the energy required to burn / combust one mole of a reactant	ractice
C is incorrect	arrows Rand Scannot be enthalpy of combustion or formation because they do not agree with the one mole part of the definitions	
D is incorrect as	arrows Rand S represents the enthalpy of reaction not formation because the enthalpy of formation is to form one mole of product	

The correct answer is C because:

- Statement lisincorrect
 - This is the symbol that would be given to the enthalpy change for the conversion of graphite to diamond and this is the one that we are calculating
- Statement 2 is correct
 - Both graphite and diamond can combust / react with oxygen to form carbon dioxide
- Statement 3 is correct
 - When graphite and diamond react to form carbon dioxide, this is also the formation of carbon dioxide

A, B & D are incorrect as statement Lis incorrect

8

The correct answer is **D** because:

- Hess's Law states that the enthalpy change for any chemical reaction is independent of the route taken, providing that the starting and final conditions, reactants and products are the same
 - Therefore, statements I, II and III are correct

A, B & C are incorrect statements I, II and III are all correct

The correct answer is **D** because:

- Arrow 1 can be labelled as:
 - \circ Either ΔH^{Θ}_{r} because it is the reaction in question
 - $\circ~$ Or $\Delta \textit{H}^{\Theta}_{\text{hyd}}$ because it is the hydration of anhydrous copper sulfate as stated in the question
- Arrows 2 and 3 must have the same label as they are forming the same aqueous products
 - The aqueous products will be in solution, so these arrows are

	· soi	
A is incorrect as	the solution, $\Delta H^{\Theta}_{\rm sol}$, and hydration, $\Delta H^{\Theta}_{\rm hyd}$, labels are the wrong way around	
B is incorrect as	arrows 2 and 3 should be ΔH^{Θ}_{sol}	
C is incorrect as	arrows 2 and 3 should have the same ΔH^{Θ}_{sol} label	ractice

The correct answer is A because:

 Anhydrous copper(II) sulfate is typically a powder which makes it difficult to accurately measure the temperature

B is incorrect as	the reaction between anhydrous copper sulfate is relatively quick	
C is incorrect as	the reaction simply requires the addition of water. The reverse reaction has high energy requirements as heat is needed to remove the water of crystallisation	
D is incorrect as	the reaction between anhydrous copper sulfate is exothermic	

Exam Papers Practice