
5.2 Further Differentiation



5.2.1 Differentiating Special Functions

Differentiating Trig Functions

How do I different iat e sin, cos and t an?

The derivative o f y = sin x is
dy
dx = cos x

The derivative o f y = cos x is
dy
dx =− sin x

The derivative o f y = tan x  is
dy
dx

=
1

cos2 x
This result can be derived using quo tient rule

All three o f these derivatives are given in the f o rmula bo o klet

Fo r the linear functio n ax+b , where a and b  are co nstants,

the derivative o f y = sin (ax+b )  is
dy
dx

= a cos (ax+b )

the derivative o f y = cos (ax+b ) is
dy
dx

=−a sin (ax+b )

the derivative o f y = tan (ax+b )  is
dy
dx

=
a

cos2
(ax+b )

Fo r the general functio n f (x ) ,

the derivative o f y = sin (f (x ))  is
dy
dx = f ' (x ) cos (f ( )x )

the derivative o f y = cos (f (x )) is
dy
dx =− f ' (x ) sin (f (x) )

the derivative o f y = tan (f (x ) )  is
dy
dx

=
f ' (x )

cos2
(f (x ) )

These last three results can be derived using the chain rule

Fo r calculus with trigo no metric functio ns angles must be measured in radians

Ensure yo u kno w ho w to  change the angle mo de o n yo ur GDC

Exam T ip

As so o n as yo u see a questio n invo lving differentiatio n and trigo no metry put yo ur GDC into

radians mo de
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a)

b)       A curve has equatio n y= tan ⎛
⎜

⎝
6x2−

π
4

⎞
⎟

⎠
.

Find the gradient o f the tangent to  the curve at the po int where x= π
2 .

Give yo ur answer as an exact value.

Worked example

Find f '(x)  fo r the functio ns

i. f (x)=sin x
ii. f (x)=cos(5x+1)
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Differentiating e^x & lnx

How do I different iat e exponent ials and logarit hms?

The derivative o f y=ex  is 
dy
dx =ex  where x∈ℝ

The derivative o f  y= ln x  is 
dy
dx =

1
x  where  x>0

Fo r the linear functio n  ax+b , where a  and b  are co nstants,

the derivative o f  y=e (ax+b )  is 
dy
dx =ae (ax+b )

the derivative o f  y = ln (ax+b )  is 
dy
dx =

a
(ax+b )

in the special case  b=0 , 
dy
dx =

1
x      (a 's cancel)

Fo r the general functio n  f (x ) ,

the derivative o f  y = ef (x )
 is 

dy
dx = f ' (x ) ef (x )

the derivative o f  y = ln (f (x ) )  is 
dy
dx =

f ' (x )

f (x )

The last two  sets o f results can be derived using the chain rule

Exam T ip

Remember to  avo id the co mmo n mistakes:

the derivative o f  with respect to    is , NOT

the derivative o f   with respect to    is  , NOT 
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Worked example

A curve has the equatio n y=e−3x+1+2ln 5x .

Find the gradient o f the curve at the po int where x=2  gving yo ur answer in the fo rm 

y=a+bec , where a, b and c are integers to  be fo und.
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5.2.2 Techniques of Differentiation

Chain Rule

What  is t he chain rule?

The chain rule  states if y is a functio n o f u and u  is a functio n o f x  then

y= f (u (x) )

dy
dx =

dy
du ×

du
dx

This is given in the f o rmula bo o klet

In f unctio n no tatio n this co uld be written

y= f (g (x) )

dy
dx = f '(g (x) )g'(x)

How do I know when t o use t he chain rule?

The chain rule is used when we are trying to  differentiate co mpo site f unctio ns

“functio n o f a functio n”

these can be identified as the variable (usually x ) do es no t ‘appear alo ne’

sin x  – no t  a co mpo site functio n, x  ‘appears alo ne’

sin(3x+2) is  a co mpo site f unctio n; x  is tripled and has 2 added to  it befo re the sine

functio n is applied

How do I use t he chain rule?

ST EP 1

Identify the two  functio ns

Rewrite y  as a functio n o f u ; y= f (u)

Write u as a functio n o f x ;  u=g (x)

ST EP 2

Differentiate y  with respect to  u  to  get
dy
du
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Differentiate u  with respect to  x  to  get
du
dx

ST EP 3

Obtain 
dy
dx by applying the fo rmula

dy
dx =

dy
du ×

du
dx and substitute u  back in fo r g (x)

In trickier pro blems chain rule  may have to  be applied mo re than o nce

Are t here any st andard result s f or using chain rule?

There are five  general results that can be useful

If y= (f ( )x )
n  then

dy
dx =nf ' (x)f (x)

n−1

If y=e f (x)
 then

dy
dx = f ' (x)e f (x)

If y= ln(f ( )x )  then
dy
dx =

f ' (x)

f (x)

If y= sin (f ( )x )  then
dy
dx = f ' (x)cos(f ( )x )

If y=cos(f ( )x )  then
dy
dx =−f ' (x)sin (f ( )x )

Exam T ip

Yo u sho uld aim to  be able to  spo t and carry o ut the chain rule mentally (rather than use

substitutio n)

every time yo u use it, say it to  yo urself in yo ur head

“differentiate the first function ignoring the second, then multiply by the derivative of the

second function"
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a)

b)

Worked example

Find the derivative o f y= (x2−5x+7)
7 .

Find the derivative o f y=sin(e2x
) .
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Product Rule

What  is t he product  rule?

The pro duct rule  states if y is the pro duct o f two  functio ns u (x)  and v (x)  then

y=uv

dy
dx =u

dv
dx +v

du
dx

This is given in the f o rmula bo o klet

In f unctio n no tatio n this co uld be written as

y= f (x)g (x)

dy
dx = f (x)g' (x)+g (x)f ' (x)

‘Dash no tatio n’ may be used as a sho rter way o f writing the rule

y=uv
y' =uv'+vu'

Final answers sho uld match the no tatio n used thro ugho ut the questio n

How do I know when t o use t he product  rule?

The pro duct rule  is used when we are trying to  differentiate  the pro duct  o f two  f unctio ns

these can easily be co nfused with co mpo site functio ns (see chain rule)

sin(cos x)  is a co mpo site functio n, “sin o f co s o f x ”

sin xcos x  is a pro duct, “sin x times co s x ”

How do I use t he product  rule?

Make it clear what u, v, u'  and v'  are

arranging them in a square can help

o ppo site diago nals match up

ST EP 1

Identify the two  functio ns, u and v
Differentiate bo th u  and v  with respect to x  to  find u'  and v'

ST EP 2

Obtain 
dy
dx  by applying the pro duct rule fo rmula

dy
dx =u

dv
dx +v

du
dx

Simplify the answer if straightfo rward to  do  so  o r if the questio n requires a particular fo rm

In trickier pro blems chain rule  may have to  be used when �nding u' and v'
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Exam T ip

Use   and   fo r the elements o f pro duct rule

lay them o ut in a 'square' (imagine a 2x2 grid)

tho se that are paired to gether are then o n o ppo site diago nals (  and  ,   and  )

Fo r trickier functio ns chain rule may be reuqired inside pro duct rule

i.e.  chain rule may be needed to  differentiate   and 

a)       Find the derivative o f y=exsin x .

b)       Find the derivative o f y=5x2 cos 3x2.

Worked example
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Quotient Rule

What  is t he quot ient  rule?

The quo tient rule  states if y is the quo tient 
u (x)

v (x)

then

y=
u
v

dy
dx =

v
du
dx −u

dv
dx

v2

This is given in the f o rmula bo o klet

In f unctio n no tatio n this co uld be written

y=
f (x)

g (x)

dy
dx =

g (x)f ' (x)−f (x)g' (x)

⎡
⎢
⎣g (x)

⎤
⎥
⎦

2

As with pro duct rule, ‘dash no tatio n’ may be used

y=
u
v

y'=
vu'−uv'

v2

Final answers sho uld match the no tatio n used thro ugho ut the questio n

How do I know when t o use t he quot ient  rule?

The quo tient rule  is used when trying to  differentiate a fractio n where bo th the numerato r and

deno minato r are f unctio ns  o f x
if the numerato r is a co nstant , negative po wers  can be used

if the deno minato r is a co nstant , treat it as a f acto r o f the expressio n

How do I use t he quot ient  rule?

Make it clear what u, v, u'  and v' are

arranging them in a square can help

o ppo site diago nals match up (like they do  fo r pro duct rule)
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ST EP 1

Identify the two  functio ns, u and v
Differentiate bo th u  and v  with respect to x  to  find u'  and v'

ST EP 2

Obtain 
dy
dx  by applying the quo tient rule fo rmula

dy
dx =

v
du
dx −u

dv
dx

v2
Be careful using the fo rmula – because o f the minus sign in the numerato r, the o rder o f the

functio ns is impo rtant

Simplify the answer if straightfo rward o r if the questio n requires a particular fo rm

In trickier pro blems chain rule  may have to  be used when finding u' and v',

Exam T ip

Use   and   fo r the elements o f quo tient rule

lay them o ut in a 'square' (imagine a 2x2 grid)

tho se that are paired to gether are then o n o ppo site diago nals (  and  ,    and  )

Lo o k o ut fo r functio ns o f the fo rm 

These can be differentiated using a co mbinatio n o f chain rule  and pro duct rule

(it wo uld be go o d practice to  try!)

... but it can also  be seen as a quo tient rule questio n in disguise 

... and vice versa!

A quo tient co uld be seen as a pro duct by rewriting the deno minato r as 

Page 11 of 27
For more help visit our website www.exampaperspractice.co.uk



Worked example

Differentiate f (x)=
cos 2x
3x+2  with respect to  x .
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5.2.3 Related Rates of Change

Related Rates of Change

What is meant by rates o f  change?

A rate o f change  is a measure o f ho w a quantity is changing with respect to  ano ther quantity

Mathematically rates o f change are derivatives

dV
dr  co uld be the rate at which the vo lume o f a sphere changes relative to  ho w its radius is

changing

Co ntext is impo rtant when interpreting po sitive and negative rates o f change

A po sitive rate o f change wo uld indicate an increase

e.g. the change in vo lume o f water as a bathtub fills

A negative rate o f change wo uld indicate a decrease

e.g. the change in vo lume o f water in a leaking bucket

What  is m eant  by relat ed rat es of  chang e?

Related rates o f change  are co nnected by a linking variable o r parameter

this is usually time, represented by t
seco nds  is the standard unit fo r time but this will depend o n co ntext

e.g. Water running into  a large bo wl

bo th the height and vo lume o f water in the bo wl change with time

time is the linking parameter

How do I solve problem s involving  relat ed rat es of  chang e?

Use o f chain rule

y=g (u) u= f (x) ⇒
dy
dx =

dy
du ×

du
dx

Chain rule is given in the f o rmula bo o klet  in the fo rmat abo ve

Different letters  may be used relative to  the co ntext

e.g.  V  fo r vo lume, S  fo r surf ace area, h  fo r height, r  fo r radius

Pro blems o ften invo lve o ne quantity being co nstant

so  ano ther quantity can be expressed in terms o f a single  variable

this makes finding a derivative a lo t easier

Fo r time  pro blems at least, it is mo re co nvenient to  use

dy
dt =

dx
dt ×

dy
dx
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and if it is mo re co nvenient to  find
dx
dy  than

dy
dx then use chain rule in the fo rm

dy
dt =

dx
dt ÷

dx
dy

Neither o f these alternative versio ns o f chain rule are in the f o rmula bo o klet

ST EP 1

Write do wn the rate o f change given and the rate o f change required

(If unsure o f the rates o f change invo lved, use the units given as a clue

e.g. m s−1  (metres per seco nd) wo uld be the rate o f change o f length, per time,
dl
dt )

ST EP 2

Use chain rule to  fo rm an equatio n co nnecting these rates o f change with a third rate

The third rate o f change will co me fro m a related quantity such as vo lume, surface area,

perimeter

ST EP 3

Write do wn the fo rmula fo r the related quantity (vo lume, etc) acco unting fo r any fixed

quantities

Find the third rate o f change o f the related quantity (derivative) using differentiatio n

ST EP 4

Substitute the derivative and kno wn rate o f change into  the equatio n and so lve it

Exam T ip

If yo u struggle to  determine which rate to  use in an exam then yo u can lo o k at the units to  help

e.g.  A rate o f 5 cm per seco nd  implies vo lume per time  so  the rate wo uld be 3
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Worked example

A cubo id has a square cro ss-sectio nal area o f side length x  cm and a fixed height o f 5 cm.

The vo lume o f the cubo id is increasing at a rate o f 20 cm  s .

Find the rate at which the side length is increasing at the po int when its side length is 3 cm.

3 -1
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5.2.4 Second Order Derivatives

Second Order Derivatives

What  is t he second order derivat ive of  a f unct ion?

If yo u differentiate  the derivative  o f a f unctio n (i.e. differentiate the functio n a seco nd time) yo u

get the seco nd o rder derivative  o f the functio n

There are two  fo rms o f no tatio n fo r the seco nd o rder derivative

y= f (x)

dy
dx = f '(x)  (First o rder derivative)

d2y
dx2 = f ''(x)      (Seco nd o rder derivative)

No te the po sitio n o f the superscript 2’s

d ifferentiating twice (so d2 ) with respect to  x twice (so x2 )

The seco nd o rder derivative  can be referred to  simply as the seco nd derivative

Similarly, the first o rder derivative  can be just the first derivative

A first o rder derivative  is the rate  o f change  o f a functio n

a seco nd o rder derivative  is the rate  o f change  o f the rate  o f change  o f a functio n

i.e. the rate  o f change  o f the functio n’s gradient

Seco nd o rder derivatives can be used to

test fo r lo cal minimum and maximum po ints

help determine the nature o f statio nary po ints

determine the co ncavity o f a functio n

graph derivatives

How do I find a second order derivat ive of  a f unct ion?

By differentiating twice!

This may invo lve

rewriting f ractio ns, ro o ts, etc as negative  and/o r f ractio nal po wers

differentiating trigo no metric  functio ns, expo nentials  and lo garithms

using chain rule

using pro duct  o r quo tient  rule
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a)

b)

Exam T ip

Negative and/o r fractio nal po wers can cause pro blems when finding seco nd derivatives so

wo rk carefully thro ugh each term

Worked example

Given that f (x)=4− x +
3
x

Find f '(x)  and f ''(x) .

Evaluate f ''(3) .

Give yo ur answer in the fo rm a b , where b  is an integer and a  is a ratio nal number.
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5.2.5 Further Applications of Differentiation

Stationary Points & Turning Points

What is the difference between a statio nary po int and a turning po int?

A statio nary po int  is a po int at which the gradient f unctio n is equal to  z ero

The tangent  to  the curve  o f the f unctio n is ho riz o ntal

A turning po int  is a type o f statio nary po int, but in additio n the f unctio n changes  fro m increasing

to  decreasing, o r vice versa

The curve ‘turns’ fro m ‘go ing upwards’ to  ‘go ing do wnwards’ o r vice versa

T urning po ints  will either be (lo cal) minimum o r maximum po ints

A po int  o f inflectio n could also  be a statio nary po int  but is no t  a turning po int

Ho w do  I find statio nary po ints and turning po ints?

Fo r the functio n y= f (x) , statio nary po ints  can be fo und using the fo llo wing pro cess

ST EP 1

Find the gradient f unctio n,
dy
dx = f '(x)

ST EP 2

So lve the equatio n f '(x)=0  to  find the x -co o rdiante(s) o f any statio nary po ints

ST EP 3

If the y -co o rdaintes o f the statio nary po ints are also  required then substitute the x -

co o rdinate(s) into f (x)

A GDC will so lve f '(x)=0 and mo st will find the co o rdinates o f turning po ints (minimum and

maximum po ints) in graphing mo de
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Testing for Local Minimum & Maximum Points

What are lo cal minimum and maximum po ints?

Lo cal minimum and maximum po ints are two  types o f statio nary  po int

The gradient f unctio n (derivative) at such po ints equals z ero

i.e.  f '(x)=0
A lo cal minimum po int, (x, f (x) ) will be the lo west value o f f (x)  in the lo cal vicinity o f the value

o f x
The functio n may reach a lo wer value further afield

Similarly, a lo cal maximum po int, (x, f (x) ) will be the lo west value o f f (x) in the lo cal vicinity o f

the value o f x
The functio n may reach a greater value further afield

The graphs o f many functio ns tend  to  infinity  fo r large  values o f x
(and/o r minus infinity  fo r large negative  values o f x )

The nature  o f a statio nary po int refers to  whether it is a lo cal minimum po int, a lo cal maximum

po int o r a po int o f  inflectio n

A glo bal minimum po int wo uld represent the lo west  value o f f (x) fo r all values  o f x
similar fo r a glo bal maximum po int

Ho w do  I find lo cal minimum & maximum po ints?

The nature  o f a statio nary po int  can be determined using the first derivative  but it is usually

quicker and easier to  use the seco nd derivative

o nly in cases when the seco nd derivative is z ero  is the first derivative metho d needed

Fo r the functio n f (x) …

ST EP 1

Find f '(x)  and so lve f '(x)=0 to  find the x -co o rdinates o f any statio nary po ints

ST EP 2  (Seco nd derivative)

Find f ''(x) and evaluate it at each o f the statio nary po ints fo und in ST EP 1

ST EP 3  (Seco nd derivative)

If f ''(x)=0 then the nature o f the statio nary po int canno t  be determined; use the first

derivative  metho d (ST EP 4 )

If f ''(x) >0  then the curve o f the graph o f y= f (x)  is co ncave up  and the statio nary po int

is a lo cal minimum po int

If f ''(x) <0  then the curve o f the graph o f y= f (x)  is co ncave do wn and the statio nary

po int is a lo cal maximum po int

ST EP 4  (First derivative)
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Find the sign o f the first derivative just either side o f the statio nary po int;  i.e. evaluate

f '(x−h)  and f '(x+h)  fo r small h

A lo cal minimum po int  changes the functio n fro m decreasing to  increasing

the gradient  changes fro m negative  to  po sitive

f '(x−h) <0, f '(x)=0, f '(x+h) >0
A lo cal maximum po int  changes the f unctio n fro m increasing to  decreasing

the gradient  changes fro m po sitive  to  negative

f '(x−h) >0, f '(x)=0, f '(x+h) <0

A statio nary po int  o f inflectio n results fro m the functio n either increasing o r decreasing

o n bo th sides  o f the statio nary po int

the gradient  do es no t change  sign

f '(x−h) >0, f '(x+h) >0    o r   f '(x−h) <0, f '(x+h) <0
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a po int  o f inflectio n do es no t  necessarily have f '(x)=0
this metho d will o nly find tho se that do  - and are o ften

called ho riz o ntal po ints  o f inflectio n

Exam T ip

Exam questio ns may use the phrase “classify turning po ints” instead o f “find the nature o f

turning po ints”

Using yo ur GDC to  sketch the curve is a valid test fo r the nature o f a statio nary po int in an

exam unless the questio n says "sho w that..." o r asks fo r an algebraic metho d

Even if required to  sho w a full algebraic so lutio n yo u can still use yo ur GDC to  tell yo u what

yo u’re aiming fo r and to  check yo ur wo rk

Worked example

Find the co o rdinates and the nature o f any statio nary po ints o n the graph o f y= f (x) where

f (x)=2x3−3x2−36x+25.

Page 21 of 27
For more help visit our website www.exampaperspractice.co.uk



Page 22 of 27
For more help visit our website www.exampaperspractice.co.uk



5.2.6 Concavity & Points of Inflection

Concavity of a Function

What is co ncavity?

Co ncavity  is the way in which a curve  (o r surface) bends

Mathematically,

a curve is CONCAVE DOWN if f ''(x) <0 fo r all values o f x  in an interval

a curve is CONCAVE UP if f ''(x) >0 fo r all values o f x in an interval

Exam T ip

In an exam an easy way to  remember the difference is:

Co ncave do wn is the shape o f (the mo uth o f ) a sad smiley ☹︎

Co ncave up  is the shape o f (the mo uth o f ) a happy smiley ☺︎
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a)

b)

Worked example

 The functio n f (x)  is given by f (x)=x3−3x+2.

Determine whether the curve o f the graph o f y= f (x)  is co ncave do wn o r co ncave up at

the po ints where x=−2 and x=2.

Find the values o f x  fo r which the curve o f the graph y= f (x)  o f is co ncave up.
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Points of Inflection

What is a po int o f  inflectio n?

A po int at which the curve o f the graph o f y= f (x)  changes co ncavity  is a po int  o f inflectio n

The alternative spelling, inflexio n, may so metimes be used

What are the co nditio ns f o r a po int o f  inflectio n?

A po int o f inflectio n requires BOT H o f the fo llo wing two  co nditio ns to  ho ld

the seco nd derivative  is z ero

f ''(x)=0
AND

the graph o f y= f (x)  changes co ncavity

f ''(x)  changes sign thro ugh a po int  o f inflectio n

It is impo rtant to  understand that the first co nditio n is no t  sufficient o n its o wn to  lo cate a po int

o f inflectio n

po ints where f ''(x)=0  co uld be lo cal minimum o r maximum po ints

the first derivative  test wo uld be needed

Ho wever, if it is already kno wn f (x)  has a po int o f inflectio n at x=a , say, then f ''(a)=0
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What abo ut the first derivative, like with turning po ints?

A po int  o f inflectio n, unlike a turning po int, do es no t necessarily have to  have a first derivative

value o f 0 ( f '(x)=0  )

If it do es, it is also  a statio nary po int  and is o ften called a ho riz o ntal po int  o f inflectio n

the tangent to  the curve at this po int wo uld be ho riz o ntal

The no rmal distributio n is an example o f a co mmo nly used functio n that has a graph with two

no n-statio nary po ints o f inflectio n

Ho w do  I find the co o rdinates o f  a po int o f  inflectio n?

Fo r the functio n f (x)

ST EP 1

Differentiate f (x) twice  to  find f ''(x)  and so lve f ''(x)=0  to  find the x -co o rdinates o f

po ssible po ints o f inflectio n

ST EP 2    

Use the seco nd derivative  to  test  the co ncavity  o f f (x) either side o f x=a

If f ''(x) <0  then f (x)  is co ncave do wn

If f ''(x) >0  then f (x)  is co ncave up

If co ncavity changes, x=a  is a po int o f  inflectio n

ST EP 3

If required, the y -co o rdinate o f a po int o f inflectio n can be fo und by substituting the x -

co o rdinate into f (x)

Exam T ip

Yo u can find the x-co o rdinates o f the po int o f inflectio ns o f   by drawing the graph 

 and finding the x-co o rdinates o f any lo cal maximum o r lo cal minimum po ints

Ano ther way is to  draw the graph   and find the x-co o rdinates o f the po ints where

the graph cro sses (no t just to uches) the x-axis

Worked example

Find the co o rdinates o f the po int o f in�ectio n o n the graph o f y=2x3−18x2+24x+5.

Fully justify that yo ur answer is a po int o f in�ectio n.
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