Boost your performance and confidence with these topic-based exam questions

Practice questions created by actual examiners and assessment experts

Detailed mark scheme
Suitable for all boards
Designed to test your ability and thoroughly prepare you

5.2 Further Differentiation

5.2.1 Differentiating Special Functions

Differentiating Trig Functions

Howdoldifferentiate in, cos and tan?

- The derivative of $\boldsymbol{y}=\sin \boldsymbol{x}$ is $\frac{d y}{d x}=\cos \boldsymbol{x}$
- The derivative of $\boldsymbol{y}=\boldsymbol{\operatorname { c o s }} \boldsymbol{x}$ is $\frac{\mathrm{d} \boldsymbol{y}}{\mathrm{d} \boldsymbol{x}}=-\sin \boldsymbol{x}$
- The derivative of $\boldsymbol{y}=\tan \boldsymbol{x}$ is $\frac{\mathrm{d} \boldsymbol{y}}{\mathrm{dx}}=\frac{1}{\cos ^{2} \mathrm{x}}$
- This result can be derived using quotient rule
- All three of these derivatives are given in the formula booklet
- For the linear function $\mathbf{a x}+\boldsymbol{b}$, where \boldsymbol{a} and \boldsymbol{b} are constants,
- the derivative of $y=\sin (a x+b)$ is $\frac{d y}{d x}=a \cos (a x+b)$
- the derivative of $y=\cos (a x+b)$ is $\frac{d y}{d x}=-a \sin (a x+b)$
- the derivative of $y=\tan (a x+b)$ is $\frac{d y}{d x}=\frac{a}{\cos ^{2}(a x+b)}$
- Forthe general function $\boldsymbol{f}(\boldsymbol{x})$,
- the derivative of $\boldsymbol{y}=\sin (\boldsymbol{f}(\boldsymbol{x}))$ is $\frac{d \boldsymbol{y}}{d \boldsymbol{x}}=f^{\prime}(\boldsymbol{x}) \cos (\boldsymbol{f}(\mathbf{x}))$
- the de rivative of $\boldsymbol{y}=\boldsymbol{\operatorname { c o s }}(\boldsymbol{f}(\boldsymbol{x}))$ is $\frac{\mathrm{d} \boldsymbol{y}}{\mathrm{dx}}=-\boldsymbol{f}^{\prime}(\boldsymbol{x}) \sin (\boldsymbol{f}(\mathrm{x}))$
- the derivative of $y=\tan (f(x))$ is $\frac{d y}{d x}=\frac{f^{\prime}(x)}{\cos ^{2}(f(x))}$
- These last three results can be derived using the chain rule
- For calculus with trigonometric functions angles must be measured in radians
- Ensure you know how to change the angle mo de on your GDC

- Exam Tip

- As soon as you see a question involving differentiation and trigo no metry put your GDC into radians mode

Worked example

a) Find $f^{\prime}(X)$ for the functions
i. $f(x)=\sin x$
ii. $f(x)=\cos (5 x+1)$
i. $f^{\prime}(x)=\cos x$
ii.

$$
f^{\prime}(x)=-5 \sin (5 x+1)
$$

(Linear function $a x+b$)
b) A curve has equation $y=\tan \left(6 x^{2}-\frac{\pi}{4}\right)$.

Find the gradient of the tangent to the curve at the point where $X=\frac{\sqrt{\pi}}{2}$.
Give yo ur answer as an exact value.

This is of the form $y=\tan (f(x))$

$$
\text { so } \frac{d y}{d x}=\frac{f^{\prime}(x)}{\cos ^{2}(f(x))}
$$

$$
f(x)=6 x^{2}-\frac{\pi}{4}
$$

$\therefore f^{\prime}(x)=12 x$
$\therefore \frac{d y}{d x}=\frac{12 x}{\cos ^{2}\left(6 x^{2}-\frac{\pi}{4}\right)}$
At $x=\frac{\sqrt{\pi}}{2}, \quad \frac{d y}{d x}=\frac{12\left(\frac{\sqrt{\pi}}{2}\right)}{\cos ^{2}\left[6\left(\frac{\sqrt{\pi}}{2}\right)^{2}-\frac{\pi}{4}\right]}$

$$
=\frac{6 \sqrt{\pi}}{\cos ^{2}\left(\frac{5 \pi}{4}\right)}
$$

$$
\therefore \frac{d y}{d x}=12 \sqrt{\pi} \text { at } x=\frac{\sqrt{\pi}}{2}
$$

Differentiating $e^{\wedge} x$ \& $\ln x$

How do Idifferentiate exponentials and logarithms?

- The derivative of $\boldsymbol{y}=\mathrm{e}^{\boldsymbol{x}}$ is $\frac{\mathrm{d} \boldsymbol{y}}{\mathrm{dx}}=\mathrm{e}^{\boldsymbol{x}}$ where $\boldsymbol{x} \in \mathbb{R}$
- The derivative of $\boldsymbol{y}=\ln \boldsymbol{x}$ is $\frac{\mathrm{d} \boldsymbol{y}}{\mathrm{d} \boldsymbol{x}}=\frac{1}{\boldsymbol{x}}$ where $x>0$
- For the linear function $\mathbf{a x}+\boldsymbol{b}$, where \boldsymbol{a} and b are constants,
- the derivative of $y=e^{(a x+b)}$ is $\frac{d y}{d x}=a e^{(a x+b)}$
- the derivative of $y=\ln (a x+b)$ is $\frac{d y}{d x}=\frac{a}{(a x+b)}$
- in the special case $b=0, \frac{\mathrm{~d} \boldsymbol{y}}{\mathrm{~d} \boldsymbol{x}}=\frac{1}{x} \quad$ (a's cancel)
- For the general function $\mathbf{f}(\boldsymbol{x})$,
- the derivative of $\boldsymbol{y}=\mathrm{e}^{\mathrm{f}(\boldsymbol{x})}$ is $\frac{\mathrm{d} \boldsymbol{y}}{\mathrm{dx}}=\mathrm{f}^{\prime}(\boldsymbol{x}) \mathrm{e}^{\mathrm{f}(\boldsymbol{x})}$
- the derivative of $\boldsymbol{y}=\ln (\mathbf{f}(\boldsymbol{x}))$ is $\frac{\mathrm{d} \boldsymbol{y}}{\mathrm{dx}}=\frac{\mathbf{f}^{\prime}(\boldsymbol{x})}{\mathrm{f}(\boldsymbol{x})}$
- The last two sets of results can be derived using the chain rule

(9) Exam Tip

- Remember to avoid the common mistakes:
- the derivative of $\ln k x$ with respect to X is $\frac{1}{x}$, NOT $\frac{k}{x}$
- the derivative of $\mathrm{e}^{k x}$ with respect to X is $k \mathrm{e}^{k x}$, NOT $k x \mathrm{e}^{k x-1}$

Worked example

A curve has the equation $y=e^{-3 x+1}+2 \ln 5 x$.
Find the gradient of the curve at the point where $x=2$ giving your answer in the form $y=a+b \mathrm{e}^{c}$, where a, b and c are integers to be found.

$$
\begin{aligned}
& y=e^{-3 x+1}+2(\ln 5 x) \\
& \therefore \frac{d y}{d x}=-3 e^{-3 x+1}+2\left(\frac{1}{x}\right) \\
& \begin{array}{cc}
\quad \begin{array}{c}
y=e^{a x+b}, \frac{d y}{d x}=a e^{a x+b "}
\end{array} \begin{array}{c}
" y=\ln (a x+b), \text { special } \\
\operatorname{cose} b=0, \frac{d y}{d x}=\frac{1}{x}
\end{array}
\end{array} \\
& \text { At } x=2, \frac{d y}{d x}=-3 e^{-3(2)+1}+\frac{2}{2}=-3 e^{-5}+1 \\
& \text { Tour GDC may beadle } \\
& \therefore \text { Gradient at } x=2 \text { is } 1-3 e^{-5} \\
& \text { ide. } a=1, b=-3, c=-5
\end{aligned}
$$

5.2.2 Techniques of Differentiation

Chain Rule

What is the chain rule?

- The chain rule states if \boldsymbol{y} is a function of \boldsymbol{U} and \boldsymbol{U} is a function of \boldsymbol{X} then

$$
y=f(u(x))
$$

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\mathrm{d} y}{\mathrm{~d} u} \times \frac{\mathrm{d} u}{\mathrm{~d} x}
$$

- This is given in the formula booklet
- Infunction notation this could be written

$$
\begin{gathered}
y=f(g(x)) \\
\frac{\mathrm{d} y}{\mathrm{~d} x}=f^{\prime}(g(x)) g^{\prime}(x)
\end{gathered}
$$

How do Iknow when to use the chain rule?

- The chain rule is used when we are trying to differentiate composite functions
- "function of a function"
- these can be identified as the variable (usually \boldsymbol{X}) does not 'appear alone'
- $\sin X$ - not a composite function, X 'appears alone'
- $\sin (3 x+2)$ is a composite function; \boldsymbol{X} is tripled and has 2 added to it before the sine function is applied

How do luse the chain rule?

STEP 1

Identify the two functions
Rewrite y as a function of $u ; y=f(u)$
Write u as a function of $X ; u=g(X)$
STEP 2
Differentiate y with respect to u to get $\frac{\mathrm{d} y}{\mathrm{~d} u}$

Differentiate U with respect to X to get $\frac{\mathrm{d} u}{\mathrm{~d} \boldsymbol{X}}$
STEP 3

$$
\text { Obtain } \frac{\mathrm{d} y}{\mathrm{~d} x} \text { by applying the formula } \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\mathrm{d} y}{\mathrm{~d} u} \times \frac{\mathrm{d} u}{\mathrm{~d} x} \text { and substitute } u \text { back in for } g(x)
$$

- In trickier problems chain rule may have to be applied more than once

Are there any standard results for using chain rule?

- There are five general results that can be useful
- If $y=(f(x))^{n}$ then $\frac{\mathrm{d} y}{\mathrm{~d} x}=n \mathrm{f}^{\prime}(x) \mathrm{f}(x)^{n-1}$
- If $y=\mathrm{e}^{f(x)}$ then $\frac{\mathrm{d} y}{\mathrm{~d} x}=f^{\prime}(x) \mathrm{e}^{f(x)}$
- If $y=\ln (f(x))$ then $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{f^{\prime}(x)}{f(x)}$
- If $y=\sin (f(x))$ then $\frac{\mathrm{d} y}{\mathrm{~d} x}=f^{\prime}(x) \cos (f(x))$
- If $y=\cos (f(x))$ then $\frac{\mathrm{d} y}{\mathrm{~d} x}=-f^{\prime}(x) \sin (f(x))$

- Exam Tip

. You should aim to be able to spot and carry out the chain rule mentally (rather than use substitution)

- every time you use it, sayit to yourself in your head "differentiate the first function ignoring the second, then multiply by the derivative of the second function"

Worked example

a) Find the derivative of $y=\left(x^{2}-5 x+7\right)^{7}$.

STEPI Identify the two functions and rewrite
$y=v^{7}$
ie. $f(u)=u^{7}$
$v=x^{2}-5 x+7$
ie. $g(x)=x^{2}-5 x+7$

STEP 2 Find $\frac{d y}{d u}$ and $\frac{d u}{d x}$

$$
\frac{d y}{d u}=7 u^{6} \quad \frac{d v}{d x}=2 x-5
$$

STEP 3 Apply chain rule, $\frac{d y}{d x}=\frac{d y}{d u} \times \frac{d u}{d x}$
Chain rule is in the formula booklet
$\frac{d y}{d x}=7 u^{6}(2 x-5)$
and substitute u back for $g(x)$

$$
\frac{d y}{d x}=7(2 x-5)\left(x^{2}-5 x+7\right)^{6}
$$

b) Find the derivative of $y=\sin \left(\mathrm{e}^{2 x}\right)$.
© 2024 Exam Papers Practice

$$
\begin{aligned}
& y=\sin \left(e^{2 x}\right) \\
& \frac{d y}{d x}=\cos \left(e^{2 x}\right) \times 2 e^{2 x} \quad \text { "... differentiate } \sin \square \text {, ignore } e^{2 x "} \\
& \sim{ }^{\prime \prime} \quad \begin{array}{l}
y=e^{a x+b} \quad, \frac{d y}{d x}=a e^{a x+b} " \\
\\
\text { or by applying chain role again derivative of } e^{2 x} \ldots "
\end{array}
\end{aligned}
$$

$$
\therefore \frac{d y}{d x}=2 e^{2 x} \cos \left(e^{2 x}\right)
$$

Product Rule

What is the product rule?

- The product rule states if y is the product of two functions $u(x)$ and $v(x)$ then

$$
y=u v
$$

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=u \frac{\mathrm{~d} v}{\mathrm{~d} x}+v \frac{\mathrm{~d} u}{\mathrm{~d} x}
$$

- This is given in the formula booklet
- Infunction notation this could be written as

$$
\begin{gathered}
y=f(x) g(x) \\
\frac{\mathrm{d} y}{\mathrm{~d} x}=f(x) g^{\prime}(x)+g(x) f^{\prime}(x)
\end{gathered}
$$

- 'Dash notation' may be used as a shorter way of writing the rule

$$
\begin{gathered}
y=u v \\
y^{\prime}=u v^{\prime}+v u^{\prime}
\end{gathered}
$$

- Final answers should match the notationused throughout the question

How do Iknow when to use the product rule?

- The product rule is used when we are trying to differentiate the product of two functions
- these caneasily be confused with composite functions (see chain rule)
- $\sin (\cos x)$ is a composite function," "sin of cos of X "
- $\sin x \cos x$ is a product, " $\sin x$ times $\cos X$ "

How do luse the product rule?

- Make it clear what $\boldsymbol{u}, \boldsymbol{V}, \boldsymbol{u}^{\prime}$ and \boldsymbol{V}^{\prime} are
- arranging them in a square can help
- opposite diagonals matchup

STEP 1

Identify the two functions, \boldsymbol{U} and V
Differentiate both \boldsymbol{U} and \boldsymbol{V} with respect to \boldsymbol{X} to find \boldsymbol{u}^{\prime} and V^{\prime}

STEP 2

Obtain $\frac{\mathrm{d} y}{\mathrm{~d} x}$ by applying the pro duct rule formula $\frac{\mathrm{d} y}{\mathrm{~d} x}=u \frac{\mathrm{~d} v}{\mathrm{~d} x}+v \frac{\mathrm{~d} u}{\mathrm{~d} x}$
Simplify the answer if straightforward to do so or if the question requires a particular form

- In trickier pro blems chain rule may have to be used when finding u^{\prime} and v^{\prime}

(?) Exam Tip

- Use u, V, u^{\prime} and V^{\prime} for the elements of product rule
- lay them out in a 'square' (imagine a 2×2 grid)
- tho se that are paired to gether are then on opposite diagonals (u and V^{\prime}, V and u^{\prime})
- For trickier functions chain rule may be reuqired inside product rule
- ie. chain rule maybe needed to differentiate U and V

Worked example

a) Find the derivative of $y=\mathrm{e}^{X} \sin x$.

$$
y=e^{x} \sin x
$$

STEP 1 Identify functions and differentiate

STEP 2 Apply product rule: ' $\frac{d y}{d x}=\frac{v d v}{d x}+\frac{v d v}{d x}$
(A sit is given in the formula booklet)

$$
y^{\prime}=e^{x} \cos x+e^{x} \sin x
$$

$\therefore \frac{d y}{d}=e^{x}(\cos x+\sin x) \quad$ It is straightforward to take a factor of e^{x} out
b) Find the derivative of $y=5 x^{2} \cos 3 x^{2}$.

$$
y=5 x^{2} \cos 3 x^{2}
$$

STEP I $\begin{aligned} u & =5 x^{2} \\ u^{\prime} & =10 x\end{aligned} X_{v}^{v}=\cos 3 x^{2} \quad$ chain rule
STEP $2 y^{\prime}=-30 x^{3} \sin 3 x^{2}+10 x \cos 3 x^{2}$

$$
\therefore \frac{d y}{d x}=10 x\left(\cos 3 x^{2}-3 x^{2} \sin 3 x^{2}\right)
$$

Quotient Rule

What is the quotient rule?

- The quotient rule states if y is the quotient $\frac{u(x)}{v(x)}$ then

$$
y=\frac{u}{v}
$$

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{v \frac{\mathrm{~d} u}{\mathrm{~d} x}-u \frac{\mathrm{~d} v}{\mathrm{~d} x}}{v^{2}}
$$

- This is given in the formula booklet
- Infunction notation this could be written

$$
\begin{gathered}
y=\frac{f(x)}{g(x)} \\
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{g(x) f^{\prime}(x)-f(x) g^{\prime}(x)}{[g(x)]^{2}}
\end{gathered}
$$

- As with product rule, 'dash notation' may be used

$$
y=\frac{u}{v}
$$

$y^{\prime}=\frac{v u^{\prime}-u v^{\prime}}{v^{2}}$
2024 Einal answers should match the notation used throughout the question

How dol know when to use the quotient rule?

- The quotient rule is used when trying to differentiate a fraction where both the numerator and denominator are functions of X
- if the numerator is a constant, negative powers can be used
- if the denominator is a constant, treat it as a factor of the expression

How doluse the quotient rule?

- Make it clear what u, V, u^{\prime} and V^{\prime} are
- arranging them in a square can help
- opposite diagonals match up (like they do for product rule)

STEP 1

Identify the two functions, \boldsymbol{U} and V
Differentiate both \boldsymbol{u} and \boldsymbol{V} with respect to \boldsymbol{X} to find \boldsymbol{u}^{\prime} and \boldsymbol{V}^{\prime}

STEP 2
Obtain $\frac{\mathrm{d} y}{\mathrm{~d} x}$ by applying the quotient rule formula $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{V \frac{\mathrm{~d} u}{\mathrm{~d} x}-u \frac{\mathrm{~d} v}{\mathrm{~d} x}}{v^{2}}$
Be careful using the formula - because of the minus signin the numerator, the order of the functions is important
Simplify the answer if straightforward or if the question requires a particularform

- In trickier problems chain rule may have to be used when finding u^{\prime} and V^{\prime},

(9) Exam Tip

- Use u, V, u^{\prime} and V^{\prime} for the elements of quotient rule
- lay them out in a 's quare' (imagine a 2×2 grid)
- those that are paired to gether are then on opposite diagonals (V and u^{\prime}, u and V^{\prime})
- Look out forfunctions of the form $y=f(x)(g(x))-1$
- These can be differentiated using a combination of chain rule and product rule (it would be good practice to try!)
- ...but it can also be seen as a quotient rule question in disguise
- ... and vice versa!
- A quotient could be seen as a pro duct by rewriting the denominator as $(g(X))-1$

Exam Papers Practice

Worked example

Differentiate $f(x)=\frac{\cos 2 x}{3 x+2}$ with respect to x.

STEPI Identify u and v, differentiate

$$
\begin{aligned}
& \begin{array}{l}
u=\cos 2 x \\
u^{\prime}=-2 \sin 2 x
\end{array}> \\
& \uparrow \quad \begin{array}{l}
v=3 x+2 \\
v^{\prime}=3
\end{array} \\
& \text { chain rule } \quad \begin{array}{l}
\text { opposite diagonals } \\
\text { match up }
\end{array}
\end{aligned}
$$

STEP 2 Apply quotient rule: $\frac{d y}{d x}=\frac{v \frac{d v}{d x}-\frac{d v}{d x}}{v^{2}}$
(A sit is given in the formula booklet)

$$
f^{\prime}(x)=\frac{(3 x+2)(-2 \sin 2 x)-(\cos 2 x)(3)}{(3 x+2)^{2}}
$$

$$
\therefore f^{\prime}(x)=\frac{-2(3 x+2) \sin 2 x-3 \cos 2 x}{(3 x+2)^{2}}
$$

(Nothing obvious) easy to simplify and question does not specify a particular form)

Exam Papers Practice

5.2.3 Related Rates of Change

Related Rates of Change

What is meant by rates of change?

- A rate of change is a measure of how a quantity is changing with respect to another quantity
- Mathematicallyrates of change are derivatives
- $\frac{\mathrm{d} V}{\mathrm{~d} r}$ could be the rate at which the volume of a sphere changes relative to how its radius is changing
- Context is important when interpreting positive and negative rates of change
- A positive rate of change would indicate an increase
- e.g. the change in volume of water as a bathtub fills
- A negative rate of change would indicate a decrease
- e.g. the change in volume of water in a leaking bucket

What is meant byrelated rates of change?

- Related rates of change are connected by a linking variable orparameter
- this is usuallytime, represented by t
- seconds is the standard unit fortime but this will depend on context
- e.g. Water running into a large bowl
- both the height and volume of water in the bowl change with time
- time is the linking parameter

How do Isolve problems involving related rates of change?

- Use of chain rule

$$
y=g(u) \quad u=f(x) \Rightarrow \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\mathrm{d} y}{\mathrm{~d} u} \times \frac{\mathrm{d} u}{\mathrm{~d} x}
$$

- Chain rule is given in the formula booklet in the format above
- Different letters maybe used relative to the context
- e.g. V forvolume, S forsurface area, h forheight, r for radius
- Problems often involve one quantity being constant
- so another quantity can be expressed in terms of a single variable
- this makes finding a derivative a lot easier
- Fortime problems at least, it is more convenient to use

$$
\frac{\mathrm{d} y}{\mathrm{~d} t}=\frac{\mathrm{d} x}{\mathrm{~d} t} \times \frac{\mathrm{d} y}{\mathrm{~d} x}
$$

and if it is more convenient to find $\frac{\mathrm{d} x}{\mathrm{~d} y}$ than $\frac{\mathrm{d} y}{\mathrm{~d} x}$ then use chain rule in the form

$$
\frac{\mathrm{d} y}{\mathrm{~d} t}=\frac{\mathrm{d} x}{\mathrm{~d} t} \div \frac{\mathrm{d} x}{\mathrm{~d} y}
$$

- Neither of these alternative versions of chain rule are in the formula booklet

STEP 1
Write down the rate of change given and the rate of change required
(If unsure of the rates of change involved, use the units given as a clue
e.g. $\mathrm{m} \mathrm{s}^{-1}$ (metres persecond) would be the rate of change of length, pertime, $\frac{\mathrm{d} l}{\mathrm{~d} t}$)

STEP 2

Use chain rule to form an equation connecting these rates of change with a third rate The third rate of change will come from a related quantity such as volume, surface area, perimeter

STEP 3

Write do wn the formula for the related quantity (volume, etc) accounting for any fixed quantities
Find the third rate of change of the related quantity (derivative) using differentiation
STEP 4
Subs titute the derivative and known rate of change into the equation and solve it

(9) Exam Tip

- If you struggle to determine which rate to use in an exam then you can look at the units to help Copyright e.g. Arate of $5 \mathrm{~cm}^{3}$ persecond implies volume pertime so the rate would be $\frac{\mathrm{d} V}{\mathrm{~d} t}$

Worked example

A cuboid has a square cross -sectional area of side length $X \mathrm{~cm}$ and a fixed height of 5 cm .
The volume of the cuboid is increasing at a rate of $20 \mathrm{~cm}^{3} \mathrm{~s}^{-1}$.
Find the rate at which the side length is increasing at the point when its side length is 3 cm .

STEP 1: Wite down rates of change given and required
$\frac{d V}{d t}=20 \quad$ (Units are cm^{3} (volume) s^{-1} (pe rsecond))
$\frac{d x}{d t}$ is required

STEP 2: Form equation from chain role and a third 'connecting' rate

$$
\frac{d V}{d t}=\frac{d x}{d t} \times \frac{d V}{d x}
$$

STEP 3: Formula for linking quantity, and its derivative
Volume (of a cuboid) is the link
$V=x^{2} \times 5=5 x^{2} \quad$ (Cross-section is square, height is constant)
Differentiate, $\frac{d V}{d x}=10 x$
Copyright
© 2024 Exam Papers Practice
STEP 4: Substitute and solve

$$
\begin{aligned}
& \frac{d V}{d t}=\frac{d x}{d t} \times \frac{d V}{d x} \\
& 20=\frac{d x}{d t} \times 10(3)
\end{aligned}
$$

$$
\therefore \frac{d x}{d t}=\frac{2}{3} \mathrm{cms}^{-1}
$$

5.2.4 Second Order Derivatives

Second Order Derivatives

What is the second order derivative of a function?

- If you differentiate the derivative of a function(i.e. differentiate the function a second time) you get the second order derivative of the function
- There are two forms of not ationfor the second order derivative
- $y=f(x)$
- $\frac{\mathrm{d} y}{\mathrm{~d} x}=f^{\prime}(x) \quad$ (First order derivative)
- $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=f^{\prime \prime}(x)$ (Second order derivative)
- Note the position of the superscript 2's
- differentiating twice (so $\mathbf{d}^{\mathbf{2}}$) with respect to \boldsymbol{X} twice (so $\boldsymbol{X}^{\mathbf{2}}$)
- The second order derivative can be referred to simply as the second derivative
- Similarly, the first order derivative can be just the first derivative
- A first order derivative is the rate of change of a function
- a second order derivative is the rate of change of the rate of change of a function
- i.e. the rate of change of the function's gradient
- Second order derivatives can be used to
- test forlocal minimum and maximum points
- help determine the nature of stationary points
- determine the concavity of a function
- graph derivatives

How dolfind a second order derivative of a function?

- Bydifferentiating twice!
- This mayinvolve
- rewriting fractions, roots, etc as negative and/orfractional powers
- differentiating trigo nometric functions, exponentials and logarithms
- using chain rule
- using product orquotient rule

(9) Exam Tip

- Negative and/orfractional powers cancause problems when finding second derivatives so work carefully through each term

Worked example

Given that $f(x)=4-\sqrt{x}+\frac{3}{\sqrt{x}}$
a) Find $f^{\prime}(x)$ and $f^{\prime \prime}(x)$.
a)

b) Evaluate $f^{\prime \prime}(3)$

Give your answer in the form $a \sqrt{b}$, where b is an integer and a is a rational number.
b)

$$
\begin{aligned}
f^{\prime \prime}(3) & =\frac{1}{12 \sqrt{3}}+\frac{9}{36 \sqrt{3}} \\
& =\frac{12}{36 \sqrt{3}}=\frac{1}{3 \sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}}=\frac{\sqrt{3}}{9} \\
f^{\prime \prime}(3) & =\frac{1}{9} \sqrt{3}
\end{aligned}
$$

5.2.5 Further Applications of Differentiation

Stationary Points \& Turning Points

What is the difference between a stationary point and a turning point?

- A stationary point is a point at which the gradient function is equal to zero
- The tangent to the curve of the function is horizontal
- A turning point is a type of stationary point, but in addition the function changes from increasing to decreasing, orvice versa
- The curve 'turns' from 'going up wards' to 'going downwards' orvice versa
- Turning points will either be (local) minimum or maximum points
- A point of inflection could also be a stationary point but is not a turning point

How do Ifind stationary points and turning points?

- For the function $y=f(x)$, stationary points can be found using the following process

STEP 1

Find the gradient function, $\frac{d y}{d x}=f^{\prime}(x)$

STEP 2

Solve the equation $f^{\prime}(X)=0$ to find the X-coordiante(s) of anystationary points

STEP 3

If the \boldsymbol{y}-coordaintes of the stationarypoints are also required then substitute the \boldsymbol{X} coordinate(s) into $f(x)$

© 2024 Exam Papers Practice

- A GDC will solve $f^{\prime}(x)=0$ and most will find the co ord inates of turning points (minimum and maximum points) in graphing mode

Testing for Local Minimum \& Maximum Points

What are local minimum and maximum points?

- Lo cal minimum and maximum points are two types of statio nary point
- The gradient function (derivative) at such points equals zero
- i.e. $f^{\prime}(x)=0$
- A local minimum point, $(x, f(x))$ will be the lowest value of $f(x)$ in the local vicinity of the value of X
- The function may reach a lower value further afield
- Similarly, a lo cal maximum point, $(x, f(x))$ will be the lowest value of $f(x)$ in the lo cal vicinity of the value of \boldsymbol{X}
- The function may reach a greater value further afield
- The graphs of many functions tend to infinity forlarge values of \boldsymbol{X} (and/or minus infinity forlarge negative values of \boldsymbol{X})
- The nature of a stationary point refers to whether it is a lo cal minimum point, a lo cal maximum point ora point of inflection
- A global minimum point would represent the lowest value of $f(X)$ for all values of X
- similarfor a global maximum point

How do I find lo cal minimum \& maximum points?

- The nature of a stationary point canbe determined using the first derivative but it is usually quicker and easier to use the second derivative
- only in cases when the second derivative is zero is the first derivative method needed
- For the function $f(x)$...

STEP 1
Find $f^{\prime}(X)$ and solve $f^{\prime}(X)=0$ to find the \boldsymbol{X}-coordinates of any stationary points
STEP 2 (Second derivative)
Find $f^{\prime \prime}(X)$ and evaluate it at each of the stationary points found in STEP 1
STEP 3 (Second derivative)

- If $f^{\prime \prime}(\boldsymbol{X})=0$ then the nature of the stationary point cannot be determined; use the first derivative method (STEP 4)
- If $f^{\prime \prime}(x)>0$ then the curve of the graph of $y=f(x)$ is concave up and the stationary point is a local minimum point
- If $f^{\prime \prime}(x)<0$ then the curve of the graph of $y=f(x)$ is concave down and the stationary point is a local maximum point
STEP 4 (First derivative)

Find the sign of the first derivative just either side of the statio nary point; i.e. evaluate $f^{\prime}(x-h)$ and $f^{\prime}(x+h)$ forsmall h

- Alocal minimum point changes the function from decreasing to increasing
- the gradient changes from negative to positive
- $f^{\prime}(x-h)<0, f^{\prime}(x)=0, f^{\prime}(x+h)>0$
- Alocal maximumpoint changes the function fromincreasing to decreasing
- the gradient changes from positive to negative
- $f^{\prime}(x-h)>0, f^{\prime}(x)=0, f^{\prime}(x+h)<0$

- A stationary point of inflection results from the function either increasing or decreasing on both sides of the stationary point
- the gradient does not change sign
- $f^{\prime}(x-h)>0, f^{\prime}(x+h)>0$ or $f^{\prime}(x-h)<0, f^{\prime}(x+h)<0$
- a point of inflection does not necess arily have $f^{\prime}(x)=0$
- this method will only find those that do - and are often called horizontal points of inflection

- Exam Tip

- Exam questions mayuse the phrase "classify turning points" instead of "find the nature of turning points"
- Using your GDC to sketch the curve is a valid test for the nature of a stationary point in an exam unless the question says "show that..." or asks for an algebraic method
- Even if required to show a full algebraic solution you can still use your GDC to tell yo u what you're aiming for and to check your work

Worked example

Find the coordinates and the nature of anystationary points on the graph of $y=f(x)$ where $f(x)=2 x^{3}-3 x^{2}-36 x+25$.

At stationary points, $f^{\prime}(x)=0$
$f^{\prime}(x)=6 x^{2}-6 x-36=6\left(x^{2}-x-6\right)$
$6\left(x^{2}-x-6\right)=0$
$(x-3)(x+2)=0$
$x=3, \quad y=f(3)=2(3)^{3}-3(3)^{2}-36(3)+25=-56$
$x=-2, \quad y=f(-2)=2(-2)^{3}-3(-2)^{2}-36(-2)+25=69$
Using the second derivative to determine their nature

$$
\begin{aligned}
& f^{\prime \prime}(x)=12 x-6=6(2 x-1) \\
& f^{\prime \prime}(3)=6(2 \times 3-1)=30>0 \\
& \therefore x=3 \text { is a local minimum point } \\
& f^{\prime \prime}(-2)=6(2 x-2-1)=-30<0
\end{aligned}
$$

$\therefore x=-2$ is a local maximum point
(Note: In this case, both stationary points are turning points)

Use a GDC to graph $y=f(x)$ and the maximin solving feature to check the answers.

5.2.6 Concavity \& Points of Inflection

Concavity of a Function

What is concavity?

- Concavity is the way in which a curve (orsurface) bends
- Mathematically,
- a curve is CONCAVE DOWN if $f^{\prime \prime}(\boldsymbol{X})<0$ for all values of X in an interval
- a curve is CONCAVE UP if $f^{\prime \prime}(X)>0$ for all values of X in an interval

Worked example

The function $f(x)$ is given by $f(x)=x^{3}-3 x+2$.
a) Determine whether the curve of the graph of $y=f(x)$ is concave down or concave up at the points where $X=-2$ and $X=2$.
$f(x)=x^{3}-3 x+2$
$f^{\prime}(x)=3 x^{2}-3$
$f^{\prime \prime}(x)=6 x$
$f^{\prime \prime}(-2)=6 x-2=-12<0 \quad$ (concave down)
$f^{\prime \prime}(2)=6 \times 2=12>0 \quad$ (concave up)
At $x=-2, y=f(x)$ is concave down
At $x=2, y=f(x)$ is concave up

Use your GDC to plot the graph of $y=f(x)$
and to help see if your answers are sensible
b) Find the values of X for which the curve of the graph $y=f(x)$ of is concave up.
$f^{\prime \prime}(x)=6 x$ from part (a)
Concave up is $f^{\prime \prime}(x)>0$
$6 x>0$ when $x>0$
$\therefore y=f(x)$ is concave up for $x>0$
Use your GOC to check your answer

Points of Inflection

What is a point of inflection?

- A point at which the curve of the graph of $y=f(x)$ changes concavity is a point of inflection
- The alternative spelling, inflexion, may so metimes be used

What are the conditions for a point of inflection?

- A point of inflection requires BOTH of the following two conditions to hold
- the second derivative is zero
- $f^{\prime \prime}(x)=0$

AND

- the graph of $y=f(x)$ changes concavity
- $f^{\prime \prime}(X)$ changes sign through a point of inflection
- It is important to understand that the first condition is not sufficient on its own to locate a point of inflection
- points where $f^{\prime \prime}(x)=0$ could be local minimum ormaximum points
- the first derivative test would be needed
- However, if it is alreadyknown $f(X)$ has a point of inflection at $X=a$, say, then $f^{\prime \prime}(a)=0$

What about the first derivative, like with turning points?

- A point of inflection, unlike a turning point, does not necess arily have to have a first derivative value of $O\left(f^{\prime}(X)=0\right)$
- If it does, it is also a stationary point and is often called a horizontal point of inflection
- the tangent to the curve at this point would be horizontal
- The normal distribution is an example of a commonly used function that has a graph with two non-stationary points of inflection

How do I find the coordinates of a point of inflection?

- Forthe function $f(x)$

STEP 1
Differentiate $f(x)$ twice to find $f^{\prime \prime}(x)$ and solve $f^{\prime \prime}(x)=0$ to find the \boldsymbol{X}-coordinates of possible points of inflection

STEP 2

Use the second derivative to test the concavity of $f(x)$ either side of $x=a$

- If $f^{\prime \prime}(x)<0$ then $f(x)$ is concave down
- If $f^{\prime \prime}(x)>0$ then $f(x)$ is concave up

If concavity changes, $X=a$ is a point of inflection

STEP 3

If required, the \boldsymbol{y}-coordinate of a point of inflection can be found by substituting the \boldsymbol{X} coordinate into $f(X)$

(9) Exam Tip

- Youcan find the x-coordinates of the point of inflections of $y=f(x)$ by drawing the graph $y=f^{\prime}(x)$ and find ing the x-coordinates of any lo cal maximum or local minimum points
- Exanotherway is to draw the graph $y=f^{\prime \prime}(x)$ and find the x-coordinates of the points where the graph crosses (not just touches) the x-axis

(. Worked example

Find the coordinates of the point of inflection on the graph of $y=2 x^{3}-18 x^{2}+24 x+5$. Fullyjustify that your answer is a point of inflection.

STEP 1: Differentiate twice, solve $f^{\prime \prime}(x)=0$

$$
\begin{aligned}
& f(x)=2 x^{3}-18 x^{2}+24 x+5 \\
& f^{\prime}(x)=6 x^{2}-36 x+24 \\
& f^{\prime \prime}(x)=12 x-36 \\
& 12 x-36=0 \text { when } x=3
\end{aligned}
$$

STEP 2: Use the second derivative to test concavity $f^{\prime \prime}(3)=0$
$f^{\prime \prime}(2.9)<0 \quad$ (concave down)
$f^{\prime \prime}(3.1)>0 \quad$ (concave up)
\therefore concavity changes through $x=3$
STEP 3: The y-coordinate is required

$$
f(3)=2(3)^{3}-18(3)^{2}+24(3)+5=-31
$$

> Since $f^{\prime \prime}(3)=0$ AnD the graph of $y=f(x)$ changes concavity through $x=3$, the point $(3,-31)$ is a point of inflection.

Use your GDC to plot the graph of $y=f(x)$ and to help see if your answer is sensible

