Exam Papers Practice

### 5.1 Differentiation Question Paper

|  |  |  |
| :--- | :--- | :--- |
| Course | DPIB Maths |  |
| Section | 5. Calculus |  |
| Topic | 5.1 Differentiation |  |
| Difficulty | Medium |  |

To be used by all students preparing for DP IB Maths AA SL Students of other boards may also find this useful

## Question la

The equation of a curve is $y=\frac{3}{2} x^{2}-15 x+2$.
Find $\frac{\mathrm{dy}}{\mathrm{d} x}$.

## Question 1b

The gradient of the tangent to the curve at point $A$ is -3 .
Find
(i)
the coordinates of A
the equation of the tangent to the curve at point A

(ii)

Give your answer in the form $y=m x+c$.


## Question 2a

Consider the function $f(x)=3 x^{7}-12 x$.
Find $f^{\prime}(x)$.

## Question 2b

Find the gradient of the graph of $f$ at $x=0$.

## Question 2c

Find the coordinates of the points at which the normal to the graph of $f$ has a gradient of 4 .


## Question 3a

The equation of a curve is $y=4-\frac{4}{x}$.
Find the equation of the tangent to the curve at $x=2$.
Give your answer in the form $y=m x+c$.

Exam Papers Practice

## Question 3b

Find the coordinates of the points on the curve where the gradient is 16 .

## Question 4a

Consider the function $f(x)=\frac{4}{x}+\frac{2 x^{4}}{5}-\frac{2}{5}, \quad x \neq 0$.
Calculate
(i)
$f(2)$
(ii)
$f^{\prime}(2)$.



## Question 4b

A line, $l$, is tangent to the graph of $y=f(x)$ at the point $x=2$.
Find the equation of 1 . Give your answer in the form $y=m x+c$.

## Question 4c

The graph of $y=f(x)$ and $l$ have a second intersection at point $A$.
Use your graphic display calculator to find the coordinates of A.

## Question 5a

Consider the function $f(x)=x^{2}-b x+c$.
Find $f^{\prime}(x)$.


## Question 5b

The equation of the tangent line to the graph $y=f(x)$ at $x=2$ is $y=x-1$.
Calculate the value of $b$.

[2 marks]

## Question 5c

Calculate the value of $c$ and write down the function $f(x)$.

## Question 6a

The curve with equation $y=a x^{2}+b x+c$ has a gradient of -7 at the point $(-1,13)$, and a gradient of -3 at the point $(1,3)$. By considering $\frac{d y}{d x}$ show that $2 a+b=-3$ and $-2 a+b=-7$.

## Question 6b

Hence find the values of $a$ and $b$.


## Question 6c

By considering a point that you know to be on the curve, find the value of $c$.

## Question 7a

The curve $C$ has equation $y=3 x^{2}-6+\frac{4}{x}$. The point $P(1,1)$ lies on $C$.
Find an expression for $\frac{d y}{d x}$.

Exam Papers Practice

## Question 7b

Show that an equation of the normal to $C$ at point $P$ is $x+2 y=3$.

## Question 7c



This normal cuts the $x$-axis at the point $Q$.
Find the length of $P Q$, giving your answer as an exact value.

## Question 8

Find the values of $x$ for which $f(x)=-9 x^{2}+5 x-3$ is an increasing function.

## Question 9

Show that the function $f(x)=x^{3}-3 x^{2}+6 x-7$ is increasing for all $x \in \mathbb{R}$.

## Question 10a

The graph of the cubic function $y=f(x)$ is shown below. Point $A$, a local minimum, is located at the origin and point $B$, a local maximum, sits at the point $(4,8)$.


State the equations of the horizontal tangent to the curve.
[2 marks]

## E,目 <br> Exam Papers Practice

## Question 10b

Write down the value of $X$ where the point of inflection is located.

## Question 10c

Find the intervals where $f$ is decreasing.

## Question 10d

Sketch the graph of $f^{\prime}(x)$, labelling clearly any intercepts and axis of symmetry.



## Question 11a

The diagram below shows part of the curve with equation $y=x^{3}+11 x^{2}+35 x+25$. The curve touches the $x$-axis at $C$ and cuts the $x$-axis at $C$. The points $A$ and $B$ are stationary points on the curve.


Using calculus, and showing all your working, find the coordinates of $A$ and $B$.


## Question 11b

Show that $(-1,0)$ is a point on the curve and explain why those must be the coordinates of point $C$.

## Question 12a

The equation of the curve $C$ is $y=\frac{1}{35} x^{5}-\frac{3}{4} x^{3}+6 x$. A section of the curve $C$ is shown on the diagram below.

Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$.

[2 marks]


## Question 12b

There are two points, R and S , along the curve $C$ at which the gradient of the normal to the curve $C$ is equal to $-\frac{1}{10}$.
Calculate the $x$-coordinates of points R and S .
[4 marks]

## Question 13a

Find the $x$-coordinates of the stationary points on the graph with equation $y=x^{3}-6 x^{2}+9 x-1$.

## Question 13b



Find the nature of the stationary points found in part (a).


## Question 13c

Determine the $x$-coordinate of the point of inflection on the graph with equation $y=x^{3}-6 x^{2}+9 x-1$.

## Question 13d

Explain why, in this case, the point of inflection is not a stationary point.
[1 mark]

## Question 14

The graph of a continuous function has the following properties:
The function is concave down in the interval $(-\infty, a)$.
The function is concave up in the interval $(a, \infty)$.
The graph of the function intercepts the -axis at the points $(b, 0),(c, 0)$ and $(d, 0)$, where $b, c$ and $d$ are such that $d>c>b>0$.

The $x$-coordinates of the turning points of the function are $e$ and $f$, which are such that $f>e$.
The graph of the function intercepts the $y$-axis at $(0, g)$
Given that the value of the function is positive when $x=a$, sketch a graph of the function. Be sure to label the $x$-axis with the $x$-coordinates of the stationary points and the point of inflection, and also to label the points where the graph crosses the coordinate axes.


