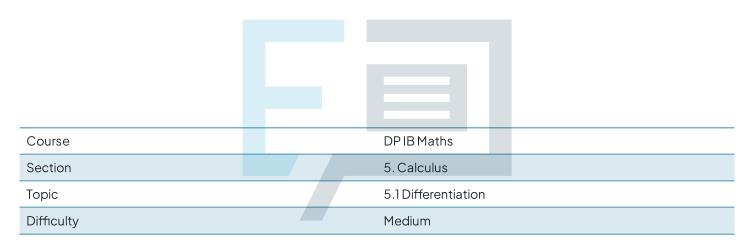


5.1 Differentiation

Mark Schemes

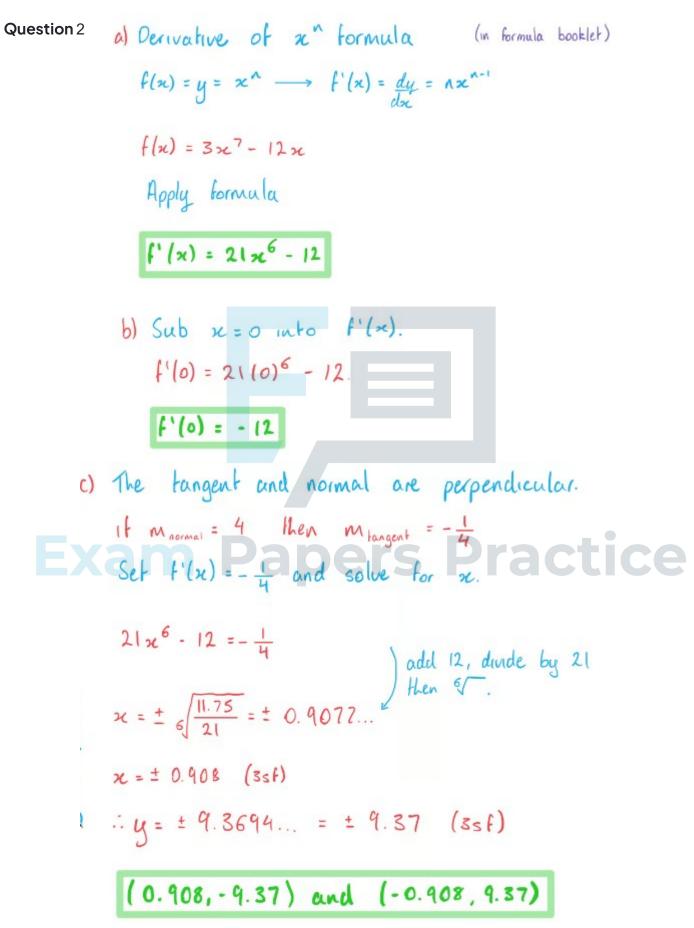


Exam Papers Practice

To be used by all students preparing for DP IB Maths AA SL Students of other boards may also find this useful

Question 1 a) Derivative of
$$x^n$$
 formula (in homula booklet)
 $f(x) = y = x^n \longrightarrow f'(x) = \frac{dy}{dx} = nx^{n-1}$
 $y = \frac{3}{2}x^2 - 15x + 2$
Apply formula
 $\frac{dy}{dx} = 3x - 15$
b)i) Set $\frac{dy}{dx} = -3$ and solve for x .
 $3x - 15 = -3$ and solve for x .
 $3x - 15 = -3$ and is then duide by 3
 $x = 4$
Example $x = 4$ and $x = 4$ practice
 $y = \frac{3}{2}(4)^2 - 15(4) + 2$
 $y = -34$
(i) Sub A and $M = -3$ into $y - y = m(x - x_1)$.
 $y = (-34) = -3(x - 4)$ derived and rearrange
 $y = -3x - 22$

Page 1



For more help visit our website www.exampaperspractice.co.uk

Page 2

a) Find dy

$$y = 4 - \frac{4}{x} = 4 - 4x^{-1}$$

$$\frac{dy}{dx} = \frac{4}{x^{2}} = 4x^{-2}$$
Sub $x = 2$ into $\frac{dy}{dx}$.

$$\frac{dy}{dx} = \frac{4}{(2)^{2}} = \frac{4}{4} = 1$$
in $m = 1$
Sub $x = 2$ into q .

$$y = 4 - \frac{4}{(2)} = 2$$
in point $(2, 2)$
Sub m and the point into $y - y_{1} = m(x - x_{1})$.

$$y - 2 = 1(x - 2)$$

$$y = x$$

Exable du 260 and solve for reactice

$$\frac{4}{x^2} = 16$$

$$\int reciprocate and multiply by 4
$$x^2 = \frac{1}{4}$$

$$\int \int x = \frac{1}{2}$$

$$\therefore y = -4 \text{ and } 12.$$

$$\left(\frac{1}{2}, -4\right) \text{ and } \left(-\frac{1}{2}, 12\right)$$$$

(2, 14)

4 (i) Sub
$$x = 2$$
 into $f(x)$.
 $f(2) = \frac{4}{(2)} + \frac{2(2)^4}{5} - \frac{2}{5}$
 $f(2) = 8$
ii) Find $f'(x)$
 $f(x) = 4x^{-1} + \frac{2}{5}x^4 - \frac{2}{5}$
 $f'(x) = -4x^{-2} + \frac{8}{5}x^3$
Sub $x = 2$ into $f'(x)$.
 $f'(2) = -4(2)^{-2} + \frac{8}{5}(2)^3$
 $f'(2) = -4(2)^{-2} + \frac{8}{5}(2)^3$
 $f'(2) = 11.8$
(b) point $(2, 8)$ D m = 158 Practice
Sub m and the point into $y \cdot y = m(x - x_1)$.
 $y - 8 = 11.8(x - 2)$) expand and rearrange
 $y = 11.8x - 15.6$

c) Graph
$$f(x)$$
 and l on your GDC and
find their intersection.
 $A(-0.222, -18.2)$
Question 5 a) Derivative of x^{n} formula (in formula booklet)
 $f(x) = y = x^{n} \longrightarrow f'(x) = \frac{dy}{dx} = nx^{n-1}$
 $f(x) = x^{2} - bx + c$
Apply formula
 $f'(x) = 2x - b$
b) Tangent equation at $x = 2$ is $y = x - 1$.
 $\therefore f'(2) = 1$
 $2(2) - b = 1$
Exambes Papers Practice
c) Sub $x = 2$ into $y = x - 1$.

$$y = 2 - 1$$

 $y = 1$
 $\therefore f(x)$ passes through (2, 1).
 $f(2) = 1$
 $(2)^2 - 3(2) + C = 1$
 $c = 3$
 $f(x) = x^2 - 3x + 3$

n⁶ a)
$$dy = 2ax^{2^{-1}} + bx^{1^{-1}} + 0$$

= $2ax + b$
Sub in each gradient and its corresponding x value
 $-7 = 2a(-1) + b$
 $-7 = -2a + b$
 $-3 = 2a(1) + b$
 $-3 = 2a(1) + b$
b) Find $0 + (2)$ to eliminate a
 $2a + b - 2a + b = -3 - 3$
 $2b = -10$
 $b = -5$
Sub $b = -5$ into (0)
 $2a - 5 = -3$
 $2a = 2$
 $a = 1$

c) Sub in values of x, y, a and b into eqn to find c

$$(13) = (1)(-1)^{2} + (-5)(-1) + c$$

 $13 = 1 + 5 + c$
 $c = 7$

a)
$$y = 3x^2 - 6 + 4x^{-1}$$

 $\frac{dy}{dx} = 6x - 4x^{-2}$

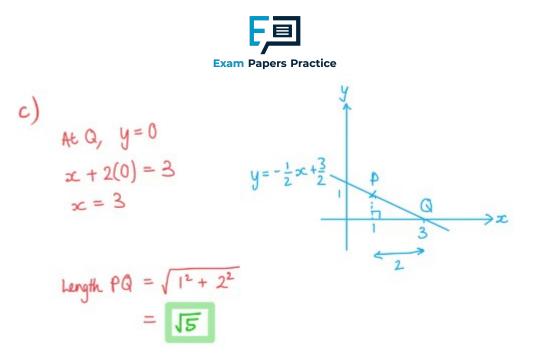
b) find gradient at P by subbing x = 2 into $\frac{dy}{dx} = q^{n}$.

$$y - y_1 = \overline{\bigcirc}^{-1} (x - \underline{x}_1)$$

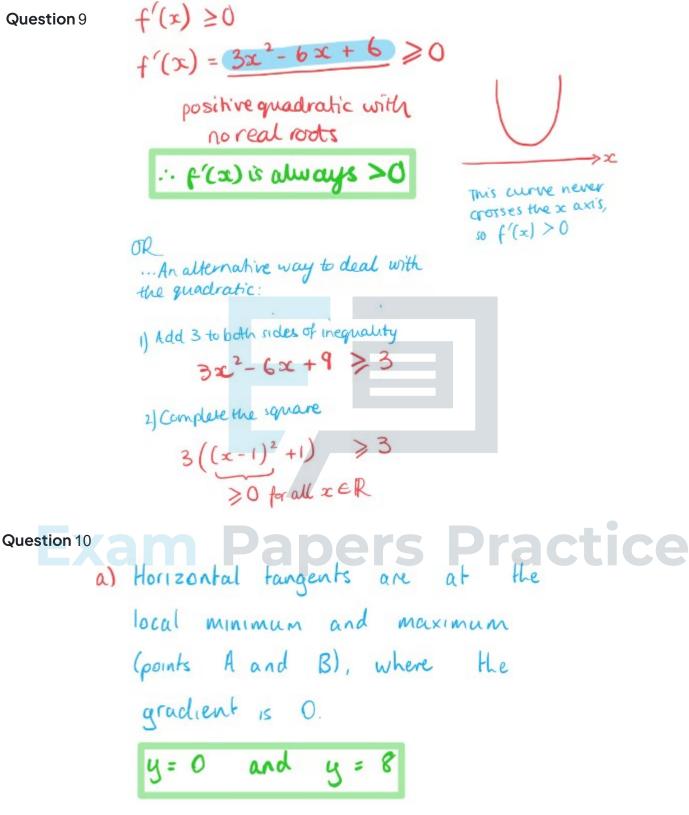
Exmady = 6(1) - 4(1) = 2 ers Practice

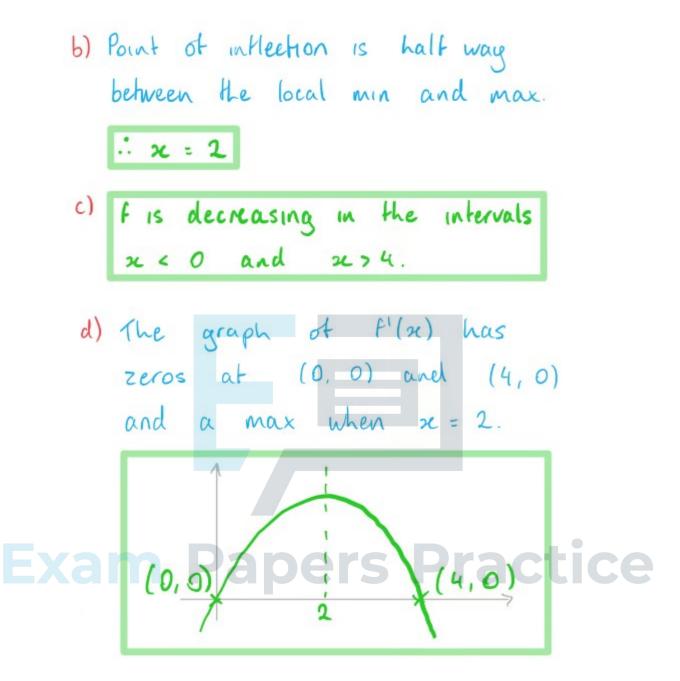
$$y - 1 = -\frac{1}{2}(x - 1)$$

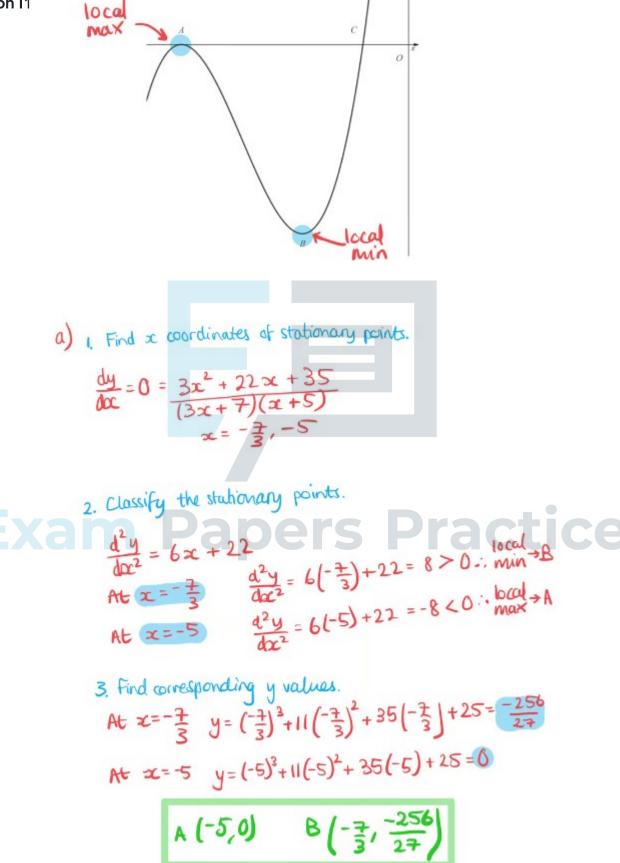
2y - 2 = -x + 1
x + 2y = 3



 $f'(x) \ge 0$ for the function to be increasing $f'(x) = -9(2)x' + 5 \ge 0$ $-18x + 5 \ge 0$ $x \le \frac{5}{18}$ Exam Papers Practice







b) When
$$x = -1$$
,
 $y = (-1)^3 + 11(-1)^2 + 35(-1) + 25$
 $= -1 + 11 - 35 + 25$
 $= 0$
 $\therefore (-1, 0)$ Lies on the curve

Question 12 a) Derivative of
$$x^n$$
 formula (in formula booklet)
Example a provide the second secon

For more help visit our website www.exampaperspractice.co.uk

b) The tangent and normal line are perpendicular.

$$M_{normal} = -\frac{1}{10} \qquad \therefore M_{tangent} = 10$$
Set $du = 10$ and solve for xe .
 $\frac{1}{7} x^4 - \frac{9}{4} x^2 + 6 = 10$
 $x = \pm 4.1668... = \pm 4.17$ (3sf)
 $x = coordinate$ for R is 4.17 and
He x -coordinate for S is -4.17.
Question 13
a) Stationary points occur where the gradient, $dy = 0$.
 $dy = 3x^2 - 12x + 9 = 0$
Example $x^2 - 4x + 3 = 0$ ers Practice
 $(x - 3)(x - 1) = 0$
 $x = 3, 1$

b)
$$\frac{d^2}{dt^2} = 6x - 12$$

When $x = 1$
 $\frac{d^2y}{dx^2} = 6(1) - 12 = -6 \le 0$ \therefore maximum point
When $x = 3$
 $\frac{d^2y}{dx^2} = 6(2) - 12 = 6 > 0 \therefore$ minimum point
This can even be predicted by
considering where the stationary
points are on a positive cubic curve!
Thuse is a maximum point at $x = 1$
and a minimum point at $x = 3$.
Exam Papers Practice

c) For a point of inflection,
$$\frac{d^2y}{dx^2} = 0$$
,
and $\frac{d^2y}{dx^2}$ changes sign either side.
 $\frac{dy}{dx^2} = 3x^2 - 12xc + 9$
 $\frac{d^2y}{dx^2} = 6x - 12 = 0$
 $x = 2$
When $x=0$ $\frac{d^2y}{dx^2} = 6(0) - 12 = -12 < 0$
When $x = 3$ $\frac{d^2y}{dx^2} = 6(3) - 12 = 6 > 0$
When $x = 3$ $\frac{d^2y}{dx^2} = 6(3) - 12 = 6 > 0$
Change of sign indicates $x = 2$ is a POI.
OR
 $x = 1$
Since this is a tre cubic,
the POI view midway
between the stationary
contre of $x = 3$ points $x = 2$.

d) Several possible answers... -It was not a solution in part (a) - when x = 2, $\frac{dy}{dx} \neq 0$ Page 15

The graph of a continuous function has the following properties:

The function is concave in the interval $(-\infty, a)$.

The function is convex in the interval (a, ∞) .

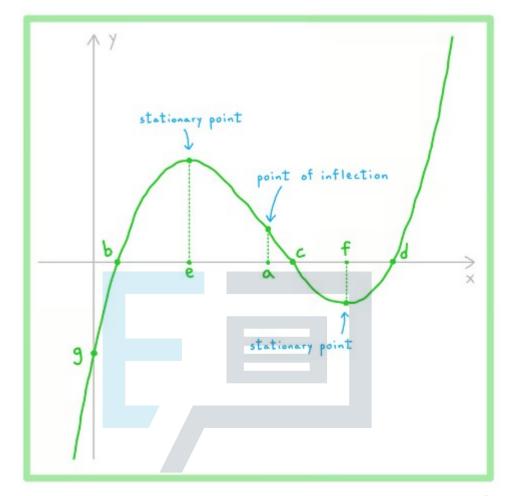
The graph of the function intercepts the x-axis at the points (b, 0), (c, 0) and (d, 0), where b, c and d are such that d > c > b > 0.

The *x*-coordinates of the turning points of the function are *e* and *f*, which are such that f > e.

The graph of the function intercepts the y-axis at (0, g)

Given that the value of the function is positive when x = a, sketch a graph of the function. Be sure to label the x-axis with the x-coordinates of the stationary points and the point of inflection, and also to label the points where the graph crosses the coordinate axes.

A stationary point is a point where a function's gradient [4] is zero. This includes (but is not limited to) turning points, i.e. local maximums and minimums A point of inflection is where a function changes from concave to convex or vice versa. CONCAVE CONVEX (sometimes called (sometimes called Plactice



Exam Papers Practice