

5.1 Differentiation

Contents

- * 5.1.1 Introduction to Differentiation
- ✤ 5.1.2 Applications of Differentiation

5.1.1 Introduction to Differentiation

Introduction to Derivatives

Before introducing a derivative, an understanding of a limit is helpful

What is a limit?

- The **limit** of a **function** is the value a function (of *X*) approaches as *X* approaches a particular value from either side
 - Limits are of interest when the function is undefined at a particular value
 - For example, the function $f(x) = \frac{x^4 1}{x 1}$ will approach a limit as x approaches 1 from both

below and above but is undefined at x = 1 as this would involve dividing by zero

What might I be asked about limits?

- You may be asked to predict or estimate limits from a table of function values or from the graph of v = f(x)
- You may be asked to use your GDC to plot the graph and use values from it to estimate a limit

What is a derivative?

- Calculus is about rates of change
 - the way a car's position on a road changes is its speed (velocity)
 - the way the car's speed changes is its acceleration
- The gradient (rate of change) of a (non-linear) function varies with X
- The derivative of a function is a function that relates the gradient to the value of X
- The derivative is also called the gradient function

How are limits and derivatives linked?

- Consider the point P on the graph of y = f(x) as shown below
 - $[PQ_i]$ is a series of chords

- The gradient of the function f(x) at the point P is equal to the gradient of the tangent at point P
- The gradient of the tangent at point P is the limit of the gradient of the chords $[PQ_i]$ as point Q 'slides' down the curve and gets ever closer to point P
- The gradient of the function changes as X changes
- The **derivative** is the function that calculates the gradient from the value *X*

What is the notation for derivatives?

• For the function y = f(x), the **derivative**, with respect to x, would be written as

$$\frac{\mathrm{d}y}{\mathrm{d}x} = f'(x)$$

Different variables may be used

• e.g. If
$$V = f(s)$$
 then $\frac{\mathrm{d}V}{\mathrm{d}s} = f'(s)$

Worked example

The graph of y = f(x) where $f(x) = x^3 - 2$ passes through the points P(2, 6), A(2.3, 10.167), B(2.1, 7.261) and C(2.05, 6.615125).

a) Find the gradient of the chords [PA], [PB] and [PC].

Gradient of a line (chord) is $\frac{42-41}{x_2-x_1}$ [PA]: $\frac{10\cdot167-6}{2\cdot3-2} = 13\cdot89$ $2\cdot3-2$ [PB]: $\frac{7\cdot261-6}{2\cdot1-2} = 12\cdot61$ [PC]: $\frac{6\cdot615125-6}{2\cdot05-2} = 12\cdot3$ [PC]: $\frac{6\cdot615125-6}{2\cdot05-2} = 12\cdot3$ [PC] 12\cdot3025

b) Estimate the gradient of the tangent to the curve at the point P.

There will be a limit the gradient of the chord reaches as the difference in the x-coordinates approaches zero.

Estimate of gradient of tangent at x=2 is 12

Differentiating Powers of x

What is differentiation?

• **Differentiation** is the process of finding an expression of the **derivative** (gradient function) from the expression of a function

How do I differentiate powers of x?

- **Powers** of *X* are **differentiated** according to the following formula:
 - If $f(x) = x^n$ then $f'(x) = nx^{n-1}$ where $n \in \mathbb{Q}$
 - This is given in the **formula booklet**
- If the power of X is multiplied by a constant then the derivative is also multiplied by that constant
 - If $f(x) = ax^n$ then $f'(x) = anx^{n-1}$ where $n \in \mathbb{Q}$ and a is a constant
- The alternative notation (to f'(x)) is to use $\frac{dy}{dx}$
 - If $y = ax^n$ then $\frac{dy}{dx} = anx^{n-1}$

e.g. If
$$y = -4x^{\frac{1}{2}}$$
 then $\frac{dy}{dx} = -4 \times \frac{1}{2} \times x^{\frac{1}{2}-1} = -2x^{-\frac{1}{2}}$

- Don't forget these **two** special cases:
 - If f(x) = ax then f'(x) = a

• e.g. If
$$y = 6x$$
 then $\frac{dy}{dx} = 6$

- If f(x) = a then f'(x) = 0• e.g. If y = 5 then $\frac{dy}{dx} = 0$
- These allow you to differentiate **linear terms** in *X* and **constants**
- Functions involving **roots** will need to be rewritten as **fractional powers** of *X* first
 - e.g. If $f(x) = 2\sqrt{x}$ then rewrite as $f(x) = 2x^{\frac{1}{2}}$ and differentiate
- Functions involving fractions with denominators in terms of X will need to be rewritten as negative powers of X first

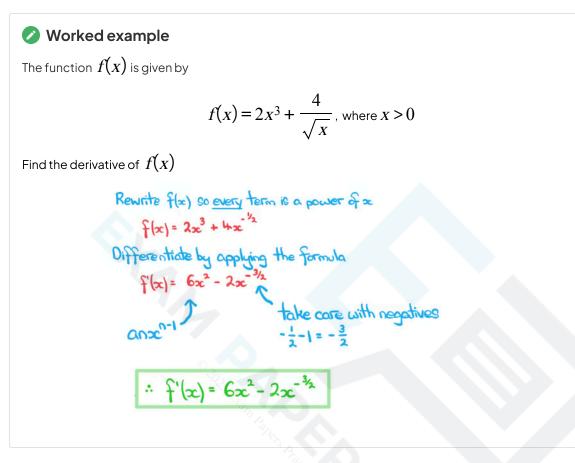
• e.g. If
$$f(x) = \frac{4}{x}$$
 then rewrite as $f(x) = 4x^{-1}$ and differentiate

How do I differentiate sums and differences of powers of x?

- The formulae for differentiating powers of *X* apply to **all rational** powers so it is possible to differentiate any expression that is a **sum** or **difference** of **powers** of *X*
 - e.g. If $f(x) = 5x^4 3x^{\frac{2}{3}} + 4$ then $f'(x) = 5 \times 4x^{4-1} - 3 \times \frac{2}{3}x^{\frac{2}{3}-1} + 0$ $f'(x) = 20x^3 - 2x^{-\frac{1}{3}}$

.

- **Products** and **quotients cannot** be differentiated in this way so would need **expanding/simplifying** first
 - e.g. If $f(x) = (2x-3)(x^2-4)$ then expand to $f(x) = 2x^3 3x^2 8x + 12$ which is a sum/difference of powers of X and can be differentiated



5.1.2 Applications of Differentiation

Finding Gradients

How do I find the gradient of a curve at a point?

- The gradient of a curve at a point is the gradient of the tangent to the curve at that point
- Find the gradient of a curve at a point by substituting the value of X at that point into the curve's derivative function
- For example, if $f(x) = x^2 + 3x 4$
 - then f'(x) = 2x + 3
 - and the gradient of y = f(x) when x = 1 is f'(1) = 2(1) + 3 = 5
 - and the gradient of y = f(x) when x = -2 is f'(-2) = 2(-2) + 3 = -1
- Although your GDC won't find a derivative function for you, it is possible to use your GDC to evaluate

the derivative of a function at a point, using $\frac{d}{dx}(\Box)_{x=\Box}$

A function is defined by $f(x) = x^3 + 6x^2 + 5x - 12$.

(a) Find f'(x).

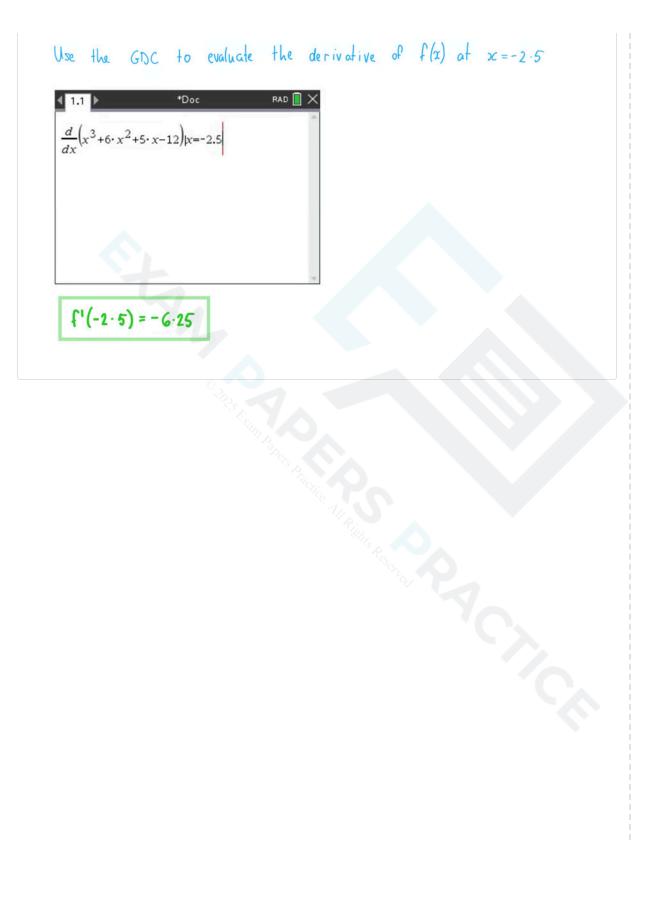
Find f'(x) by differentiating $f'(x) = 3x^2 + 2 \times 6x^4 + 5x^6$

 $f'(x) = 3x^2 + 12x + 5$

(b) Hence show that the gradient of y = f(x) when x = 1 is 20.

Substitute x = 1 into f'(x) $f'(1) = 3(1)^2 + 12(1) + 5$ = 3 + 12 + 5f'(1) = 20

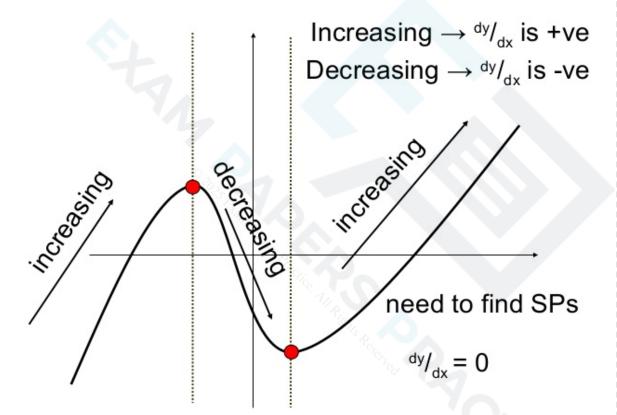
(c) Find the gradient of y = f(x) when x = -2.5.



Increasing & Decreasing Functions

What are increasing and decreasing functions?

- A function, f(x), is increasing if f'(x) > 0
 - This means the value of the function ('output') increases as X increases
- A function, f(x), is decreasing if f'(x) < 0
 - This means the value of the function ('output') decreases as X increases
- A function, f(x), is stationary if f'(x) = 0



How do I find where functions are increasing, decreasing or stationary?

 To identify the intervals on which a function is increasing or decreasing STEP 1
 Find the derivative f'(x)

STEP 2 Solve the inequalities

f'(x) > 0 (for increasing intervals) and/or f'(x) < 0 (for decreasing intervals)

- Most functions are a combination of increasing, decreasing and stationary
 - a range of values of X (interval) is given where a function satisfies each condition
 - e.g. The function $f(x) = x^2$ has derivative f'(x) = 2x so
 - f(x) is decreasing for x < 0
 - f(x) is stationary at x = 0

• f(x) is increasing for x > 0

$$f(x) = x^2 - x - 2$$

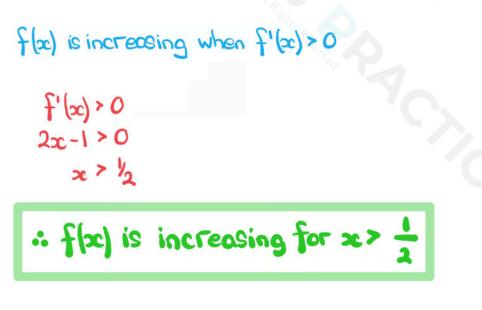
a) Determine whether f(x) is increasing or decreasing at the points where x = 0 and x = 3.

Differentiate

$$f'(x) = 2x - 1$$

At $x = 0$, $f'(0) = 2x0 - 1 = -1 < 0$: decreasing
At $x = 3$, $f'(3) = 2x3 - 1 = 5 > 0$: increasing
 \therefore At $x = 0$, $f(x)$ is decreasing
At $x = 3$, $f(x)$ is increasing

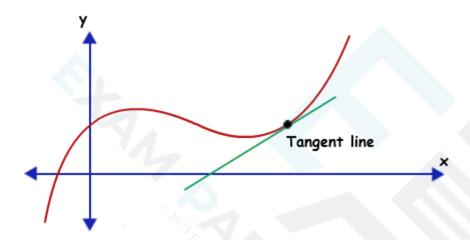
b) Find the values of X for which f(x) is an increasing function.



Tangents & Normals

What is a tangent?

- At any point on the graph of a (non-linear) **function**, the **tangent** is the straight line that **touches** the graph at a point **without crossing** through it
- Its gradient is given by the derivative function



How do I find the equation of a tangent?

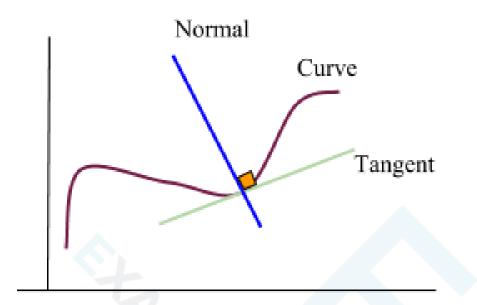
- To find the equation of a straight line, a point and the gradient are needed
- The gradient, m, of the tangent to the function y = f(x) at (x_1, y_1) is $f'(x_1)$
- Therefore find the equation of the tangent to the function y = f(x) at the point (x_1, y_1) by

substituting the gradient,
$$f'(x_1)$$
, and point (x_1, y_1) into $y - y_1 = m(x - x_1)$, giving:
 $y - y_1 = f'(x_1)(x - x_1)$

• (You could also substitute into y = mx + c but it is usually quicker to substitute into $y - y_1 = m(x - x_1)$)

What is a normal?

• At any point on the graph of a (non-linear) function, the **normal** is the straight line that passes through that point and is **perpendicular** to the **tangent**



How do I find the equation of a normal?

- The gradient of the normal to the function y = f(x) at (x_1, y_1) is $\frac{-1}{f'(x_1)}$
- Therefore find the equation of the normal to the function y = f(x) at the point (x_1, y_1) by using

$$y - y_1 = \frac{-1}{f'(x_1)}(x - x_1)$$

Worked example

The function f(x) is defined by

$$f(x) = 2x^4 + \frac{3}{x^2} \qquad x \neq 0$$

a) Find an equation for the tangent to the curve y = f(x) at the point where x = 1, giving your answer in the form y = mx + c.

First find
$$f'(x)$$
 by differentiating
 $f(x) = 2x^{14} + 3x^{-2}$ Rewrite as powers of x
 $f'(x) = 8x^3 - 6x^{-3}$
For a tangent, "y-y₁ = $f(a)(x-x_1)$ "
At $x = 1$, $y = 2(1)^{14} + \frac{3}{(1)^2} = 5$
 $f'(1) = 8(1)^3 - \frac{6}{(1)^3} = 2$
 $(1)^3$
 $\therefore y - 5 = 2(x - 1)$
Tangent at $x = 1$, is $y = 2x + 3$

b) Find an equation for the normal at the point where x = 1, giving your answer in the form ax + by + d = 0, where a, b and d are integers.

For a normal, "y-y_1 = $\frac{-1}{f'(a)}(x-x_1)$ " Using results from part (a): $y-5 = \frac{-1}{2}(x-1)$ $y = -\frac{1}{2}x + \frac{11}{2}$ 2y = -x + 11"Equation of normal is x + 2y - 11 = 0