Name:

5.1 Number systems

Class: \qquad

Date: \qquad
Time:
115 minutes
Marks:
85 marks

Comments:

Q1.

(a) Three numbers are listed in the first column of Table 1.

For each row in Table 1, shade one or more lozenges, in the appropriate column(s), to indicate which set(s) of numbers contain(s) the number on the row.

As an example, the first row has been completed for you, to indicate that π is a member of the set of irrational numbers and the set of real numbers, but is not a member of the sets of natural, integer or rational numbers.

Table 1

	Natural	Integer	Rational	Irrational	Real
$\boldsymbol{\pi}$	\bigcirc	\bigcirc	\bigcirc		\bigcirc
$\mathbf{1 5 / 2 3}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
$\mathbf{1 0 8}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc

(b) Table 2 shows a list of eight numbers, stored in an array.

Index	[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]
Contents	48	9	201	62	82	92	30	72

Describe what an ordinal number is and what an ordinal number would be used for in the context of this array.

\qquad
\qquad
\qquad
(Total 4 marks)

Q2.
\mathbb{R} denotes the set of real numbers, which includes the natural numbers, the rational numbers and the irrational numbers.
(a) Give one example of a natural number.
\qquad
(b) Give one example of an irrational number.

Q3.
A particular computer uses a normalised floating point representation with an 8-bit mantissa and a 4-bit exponent, both stored using two's complement.

Four bit patterns that are stored in this computer's memory are listed in the figure below and are labelled A, B, C, D. Three of the bit patterns are valid floating point numbers and one is not.

- (a) Complete the table below. In the Correct letter (A-D) column shade the appropriate lozenge $\mathbf{A}, \mathbf{B}, \mathbf{C}$ or \mathbf{D} to indicate which bit pattern from above is an example of the type of value described in the Value description column.

Do not use the same letter more than once.

Value description	Correct letter (A-D)			
A positive normalised value	A O	B O	C 10	D 0
The most negative value that can be represented	A ${ }^{+}$	B 10	c 10	D ${ }^{1}$
A value that is not valid in the representation because it is not	A	B 0	c 0	D 10

normalised	

(b) The following is a floating point representation of a number:

Mantissa

Exponent

Calculate the decimal equivalent of the number. Show how you have arrived at your answer.
\qquad
\qquad
Answer \qquad
(c) Write the normalised floating point representation of the negative decimal value -6.75 in the boxes below. Show how you have arrived at your answer.

Mantissa

Exponent
(d) An alternative two's complement format representation is proposed. In the alternative representation 6 bits will be used to store the mantissa and 6 bits will be used to store the exponent.

Existing Representation (8-bit mantissa, 4-bit exponent):

Proposed Alternative Representation (6-bit mantissa, 6-bit exponent):

Mantissa

Exponent

Explain the effects of using the proposed alternative representation instead of the existing representation.
\qquad
\qquad
\qquad
\qquad

Q4.
A normalised floating point representation uses an 8-bit mantissa and a 4-bit exponent, both stored using two's complement format
(a) In binary, write the largest positive number that can be represented using this normalised floating point system in the boxes below:

(b) This is a floating point representation of a number:

Calculate the denary equivalent of the number. Show how you have arrived at your answer.

Working \qquad
\qquad
\qquad

Answer \qquad
(c) This is a floating point representation of a number:

Mantissa

Exponent

Calculate the denary equivalent of the number. Show how you have arrived at your answer.

Working \qquad
\qquad
\qquad

Answer \qquad
(d) Write the normalised floating point representation of the negative denary value -108 in the boxes below. Show how you have arrived at your answer.

Working \qquad

(e) (i) In the context of floating point representation, explain what overflow is.
\qquad
\qquad
\qquad
\qquad
(ii) The table below contains descriptions of operations which may or may not cause an overflow error when they are carried out with a floating point representation.

Place one tick next to the operation that may cause overflow.

Operation	May cause overflow? (Tick one box)
Subtracting a very small number from a large number.	
Dividing a large number by a very small number.	
Multiplying a large number by a very small number.	

Q5.
A particular computer uses a normalised floating point representation with an 8-bit mantissa and a 4-bit exponent, both stored using two's complement.
(a) Four bit patterns that are stored in this computer's memory are listed in Figure 1 and are labelled with the letters A to D. Three of the bit patterns are valid floating point numbers and one is not.

Figure 1
A

0	1	0	0	0	0	0	0

Mantissa

1	0	0	0

Exponent

Mantissa

C

0	0	1	0	1	0	0	0

0	1	1	0

Mantissa

1	0	1	0	1	0	0	0

0	1	0	1

Complete Table 1 below. In the Correct letter (A-D) column write the appropriate letter from \mathbf{A} to \mathbf{D} to indicate which bit pattern in Figure 1 is an example of the type of value described in the Value description column.

Do not use the same letter more than once.
Table 1

Value description	Correct letter (A-D)
A negative value.	
The smallest positive value that can be represented.	
A value that is not valid in the representation because it is not normalised.	

(b) This is a floating point representation of a number.

Exponent

Calculate the denary equivalent of the number. Show how you have arrived at your answer.

EXAling PAPERS PRACTICE
\qquad

Answer: \qquad
(c) Write the normalised floating point representation of the negative denary value -7.75 in the boxes below. Show how you have arrived at your answer.

Working: \qquad
\qquad
\qquad
\qquad

Answer: \qquad

Mantissa

Exponent
(d) There can be a loss of precision when a denary number is stored using this floating point system.

The closest possible representation of the denary number 6.9 is shown below.

0	1	1	0	1	1	1	0

0	0	1	1

Mantissa
Exponent
By converting this bit pattern back into denary it can be seen that the actual number stored is 6.875, not 6.9.
(i) Calculate the absolute error that has occurred.

(ii) Calculate the relative error that has occurred.
\qquad
\qquad
E A (iii) $M_{\text {Explain how the floating point system used could be modified to allow a more }}$
(iii) Explain how the floating point system used could be modiffed to allow a more accurate representation of 6.9.
\qquad
\qquad
\qquad

Q6.

Create a folder/directory for your new program.
The algorithm, represented as a flowchart below, and the variable table, describe the converting of a 4-bit binary value into denary.

What you need to do

Write a program for the above algorithm.
Test the program by showing the result of entering the values $1,1,0,1$ (in that order).

Save the program in your new folder/directory.

Evidence that you need to provide

(a) Your PROGRAM SOURCE CODE.
(b) SCREEN CAPTURE(S) for the test described above.
(c) What is the largest denary number that could be output by the algorithm represented by the flowchart in the diagram above?
\qquad
(d) The algorithm represented by the flowchart above can convert sixteen different bit patterns into denary.

patterns could be converted into denary?
\qquad
(e) When developing a new system the stages of the systems development life cycle could be followed.

At which stage of the systems development life cycle would the flowchart above have been created?

(f) At which stage of the systems development life cycle would the algorithm

Q7.
(a) Represent the denary number 123 in binary using 8 bits.

Answer \qquad
(b) How many different denary numbers can be represented using 8-bit binary?

Answer \qquad
(c) What is the hexadecimal equivalent of the denary number 123 ?

(d) Why are bit patterns often displayed using hexadecimal instead of binary?

Q8.
In a particular programming language, the correct syntax for a real number is defined by the syntax diagrams in the diagram below.
real number:

digit.

(a) Write Yes or No in the spaces in the empty column of the table below to identify whether or not the numbers listed in the table are valid real numbers which conform to the correct syntax for this language.

Real number	Valid? (Yes / No)
203.412	
-12.87	
$12.43 \mathrm{E}-12$	

(b) In the same language:

A digit is defined as any single numeric symbol from this list: $0,1,2,3,4,5,6,7,8$, 9.

A whole number is defined as a sequence of one or more digits.
An integer is defined as a whole number or a + or a - symbol followed by a whole number.

Write Backus-Naur Form (BNF) production rules for digit, whole number and integer.
 different generations of programming language.

Program 1

```
If Sales > 10000
    Then BonusPayment :=True
etc.
etc.
Procedure InputNewData
Procedure ToOutputFile
etc ...
```

Program 2

Move	\#0, R1
Add	R1, R2
Store	R1, 0197
Move	$0198, ~ R 3$
Add	R2, R3
Cmp	R3, \#1662
Bne	0988
etc \ldots	

Program 3

10000101
10101111
10101111
11100001
10101111
etc \ldots

The above programs were written for different tasks.
(a) What generation of programming language was used for Program 1?
(b) Indicate which program was most likely to have been written for:
(i) controlling a new hardware device.
\qquad
(ii) a payroll application.
\qquad
(c) Program 1, Program 2 and Program 3 may require translation before each can be executed.

	Assembler	Compiler	None
Program 1			
Program 2			
Program 3			

Put one tick on each row in the table above to indicate the translator software required.
(d) Describe how interpreter software enables a program written in a high level language to be executed.

(e) A friend gives you a copy of a freeware assembler. Why might you not be able to use this successfully on your computer?
\qquad
\qquad

Q10.

A programming language has two different data types for storing positive integers.
Data type Integer1 uses a single byte to store data.
Data type Integer2 uses two consecutive bytes to store data.
(a) The program statement below defines a variable NoOfAccidents.

Var NoOfAccidents : Integer1 ;
What is the largest value which can be assigned to NoOfAccidents?
(b) Two more program statements are:

Var JourneyMileageA : Integer1 ;
Var JourneyMileageB : Integer1 ;
Interpreter software uses address 600 for storing a value for JourneyMileageA. See Figure 1.

Figure 1

(i) State the denary value for the stored binary value.

JourneyMileageA = \qquad
(ii) The program statement:

JourneyMileageB := 138 ;
stores the data value for JourneyMileageB at address 603.
What binary value will be stored at location 603?
(c) Another program statement is:

Var TotalMileage : Integer2 ;
The interpreter software uses locations 700 and 701 to store a value for TotalMileage with the most significant byte stored at location 700. See Figure 1.

What is the denary value assigned to Totalmileage?
\qquad
(d) Programs also work with character data.

ASCII Code Table

Character	Decimal	Character	Decimal	Character	Decimal
<space>	32	1	73	R	82
A	65	J	74	S	83
B	66	K	75	T	84
C	67	L	76	U	85
D	68	M	77	V	86
E	69	N	78	W	87
F	70	0	79	X	88
$=2, A G$	A 71		- 80	Y	89
H	72	Q	81	Z	90

(i) Using the ASCII code table shown above, what is the 7-bit binary ASCII code for character ' B '?
\qquad
(ii) When a parity bit is included, character codes are stored as 8-bit binary numbers where the most significant bit is a parity bit. This system will use even parity.

Describe how the parity bit is used during data transmission of a single character.
\qquad
\qquad
(2)

E旬
 EXAM PAPERS PRACTICE

