

5.1 Energetics

Mark Schemes

Exam Papers Practice

To be used by all students preparing for DP IB Chemistry SL Students of other boards may also find this useful

The correct answer is C because:

- The energy transferred as heat is given by the equation; $q = mc\Delta T$
 - Where *q* is heat transferred (J), *m* is the mass of water (g), *c* is the specific heat capacity (J g⁻¹ °K⁻¹), Δ*T* is the temperature change (K)
- Known quantities:
 - Mass of water; 500 g
 - Temperature change; (68 25)°C
 - Specific heat capacity of water; 4.2 J g⁻¹ °K⁻¹
- Substitution into the equation:

 $q = mc \Delta T = 500 \times 4.2 \times (68 - 25)$

- We can see from the question that this represents 30% of the energy released by the combustion of the fuel
 - The total energy released: $500 \times 4.2 \times (68 - 25) \times \frac{100}{30}$

The question asks for the total energy released per gram of fuel burnt,
 2.5 g of fuel was used in the experiment

Energy per gram of fuel

$$\frac{500 \times 4.2 \times (68 - 25) \times \frac{100}{30} \times \frac{1}{2.5}}{\frac{500 \times 4.2 \times (68 - 25) \times 100}{30 \times 2.5}}$$

Page 2

The correct answer is A because:

	Steps	Calculation
1	Calculate the temperature change of the hydrochloric acid	e 24.4 - 17.6 = 6.8 °C
2	Calculate $q = mc\Delta T$ for the hydrochloric acid	25.0 x 4.18 x 6.8
3	Calculate the temperature change of the sodium hydroxide	e 24.4 - 18.5 = 5.9 °C
4	Calculate $q = mc\Delta T$ for the sodium hydroxide	25.0 x 4.18 x 5.9
5	Determine the total energy evolved by adding the two energy changes	(25.0 x 4.18 x 6.8) + (25.0 x 4.18 x 5.9)

B is incorrect as	this is calculating the average enthalpy change per chemical, not the overall enthalpy change	actice
C is incorrect as	this is calculating the enthalpy change based on the average temperature increase of the two chemicals	
Dis incorrect as	the total volume has been used for each $q = mc\Delta T$ calculation instead of the actual volume of each chemical	

This question is unusual but when the starting temperatures of the two liquids are different, you should calculate $q = mc\Delta T$ for each solution and then add your answers together

The correct answer is **B** because:

	Steps	Calculation
1	Convert the heat energy from MJ to J	0.1 x 10 ⁶ = 100000 J
2	Convert the mass from kg to g	2.5 x 10 ³ = 2500 g
3	Rearrange $q = mc\Delta T$ for c	$C = \frac{q}{m \varDelta T}$
4	Substitute the values into the equation	$\frac{100000}{2500 \times 44.4}$

A is incorrect as	the mass of aluminium hasn't been converted into goers PI	actice
C is incorrect as	the mass of aluminium hasn't been converted into g and the heat energy hasn't been converted into J	
D is incorrect as	the heat energy hasn't been converted into J	

Page 3

3

The correct answer is **C** because:

	Steps	Calculation
1	$q = mc\Delta T$	500 x 0.448 x 12.7
2	Convert <i>q</i> from J to kJ	500 × 0.448 × 12.7 1000
3	Number of moles of iron, <i>n</i>	500 55.85
4	$\Delta H = \frac{q}{n}$	<u>500×0.448×12.7</u> 1000 × <u>55.85</u> 500
5	Simplify	0.448 × 12.7 × 55.85 1000

Ais	
incorrect	ghasn't been converted into kJ Practice
as	
Bis	the number of moles hasn't been inverted
incorrect	when changing from ÷ to x, e.g.
as	500 × 0.448 × 12.7 500
	1000 55.85
Dis	the iron cube is absorbing the heat energy
incorrect	which is an endothermic process and has a
as	positive ΔH value

Page 4

The correct answer is **D** because:

- To calculate enthalpy change, the energy released during the reaction and the amounts of reactants are required
 - The energy released is calculated from $q = mc\Delta T$
 - The amounts of reactants can give the value of $m \ln q = mc\Delta T$ and

the moles required to calculate $\Delta H = \frac{q}{n}$

- The system describes the reaction mixture
 - · Heat transfer to the system is heat that is warming the system
 - Therefore, heat transfer to the system will cause the temperature change for the reaction to be closer to the true value meaning that the experimental data values will be higher / closer to the expected values

A is incorrect as	heat lost through convection will be heating the surroundings, not the system, which will lead to a lower experimental value than expected	
B is incorrect as	the standard state of water is liquid, therefore, some heat energy has been wasted in causing the state change, which will lead to a lower experimental value than expected	actice
C is incorrect as	an inadequate supply of oxygen causes incomplete combustion, which will lead to a lower experimental value than expected	

The correct answer is **D** because:

- The standard enthalpy of formation, ΔH^θ_f, is the enthalpy change when **one mole** of a compound is formed from it elements, under standard conditions
 - 7 moles of SO₂ are formed
 - Therefore, this equation cannot be described as a standard enthalpy of formation equation
- The standard enthalpy of combustion, ΔH^θ_c, is the enthalpy change when one mole of a substance is burnt in excess oxygen, under standard conditions, with all reactants and products in their standard states
 - The standard physical state of S₇ is solid **but** S₇ is not the most energetically stable allotrope of sulfur
 - Therefore, this is not a standard state for the element sulfur
 - This means that this equation cannot be described as a standard enthalpy of combustion equation
- The enthalpy change of reaction, $\Delta H_{\rm r}$, is the enthalpy change when the reactants in the stoichiometric equation react to give the
 - products
 - In the question, this enthalpy is **not** a standard enthalpy as there is no Θ symbol
 - The enthalpy change of reaction does not require reactants and products to in their standard states
 - Therefore, this equation can be described as an enthalpy of reaction equation

7

The correct answer is **B** because:

•
$$\Delta H = \frac{q}{n} = \frac{mc\Delta T}{n}$$
 which rearranges to $\Delta T = \frac{\Delta H \times n}{m \times c}$

	Steps	Calculation
1	Convert ΔH from kJ to J	1216 x 1000 = 1216000
2	Number of moles of cyclohexane, n	$\frac{(186.79 - 186.29)}{84.18} = \frac{0.5}{84.18}$
3	Substitute into $\Delta T = \frac{\Delta H \times n}{m \times c}$	$\Delta T = \frac{1216000}{50.00 \times 4.18} \times \frac{0.5}{84.18}$
4	Simplify	$\Delta T = \frac{608000}{50.00 \times 4.18 \times 84.18}$ $\Delta T = \frac{60800}{5.00 \times 4.18 \times 84.18}$
ar	Final temperature = initial temperature + ΔT	$19.6 + \Delta T$ $19.6 + \frac{60800}{5.00 \times 4.18 \times 84.18}$

A is incorrect as	Δ <i>H</i> was not converted from kJ to J
C is incorrect as	ΔH was not converted from kJ to J AND the number of moles was not inserted into the ΔT equation correctly
D is incorrect as	the number of moles was not inserted into the ΔT equation correctly

The correct answer is **D** because:

- Statement l is correct
 - There will still be heat loss by heating the material in the combustion chamber as some lost through the top of the combustion chamber
 - But, overall, more of the heat produced goes directly into heating the water of the combustion chamber
- Statement II is correct
 - The chamber calorimeter has a constant air supply which reduces the amount of incomplete combustion
 - Careful: In calorimetry, there is a large focus on incomplete combustion - the wording of this statement is flipped to talk about complete combustion
- Statement III is correct
 - Fuel is lost through evaporation but this will not happen as readily in the combustion chamber

9

The correct answer is A because:

- Statement l is correct
 - With no further information, you have to assume that the solutions are at the same temperature
 - If they were at different temperatures, then you would have to calculate *q* for each solution
- Statement II is correct
 - While there will be a precipitate of barium sulfate formed, the assumption is that there will still be 50 cm³ of water formed which is equal to 50 g

- Statement III is incorrect
 - The barium sulfate precipitate will absorb some of the heat energy
 - · This is in the reaction vessel and therefore part of the system

B, C & D are incorrect as	they include statement III

10

The correct answer is C because:

- The energy transferred can be calculated using $q = mc\Delta T$
- Statement l is incorrect
 - Careful: The mass of magnesium is not needed to calculate the energy transferred
 - It is needed to calculate the molar enthalpy change
- Statement II is correct
 - The mass of water is m in the equation
- Statement III is correct
 - The temperature change is ΔT in the equation

