

5.1 Energetics Mark Schemes

Exam Papers Practice

To be used by all students preparing for DP IB Chemistry HL Students of other boards may also find this useful

The correct answer is **D** because:

- The energy transferred as heat is given by the equation; $q = mc\Delta T$
- Known quantities:
 - Volume of solution; 30 + 30 = 60 cm³
 - Aqueous solution are assumed to have the same density as water, 1 g cm⁻³
 - Temperature change; 0.5 °C
 - Change in temperature does not need to be converted into Kelvin
 - Specific heat capacity; 4.18 Jg⁻¹ K⁻¹
- · Substitution into the equation:

$$q = mc \Delta T = 60 \times 4.18 \times 0.5$$

- Divide this answer by the moles as the question asked for the molar enthalpy change.
- · Inputting into the formula

moles, n = conc
$$\times \frac{vol}{1000} = 0.025 \times \frac{30}{1000}$$

• Divide the energy released by the moles to get the energy per mol

$$\frac{q}{n} = \frac{60 \times 4.18 \times 0.5 \times 1000}{0.025 \times 30}$$
 S Practice

 Convert into kJ by dividing by 1000 and add a minus sign as the reaction is exothermic (as the temperature rose)

$$\frac{60 \times 4.18 \times 0.5 \times 1000}{0.025 \times 30 \times 1000}$$

You can cancel 1000 from top and bottom so the final expression is

$$-\frac{60 \times 4.18 \times 0.5}{0.025 \times 30}$$

IMPORTANT NOTE- As this is an acid / base reaction the molar enthalpy change can also be expressed as ΔH_{neut} . The molar enthalpy change will be calculated per mole of water formed. The numerical answer will be the same

The correct answer is B because:

- The standard enthalpy change of neutralisation (ΔH^O_{neut}) is the enthalpy change when one mole of water is formed by the reaction of an acid with alkali under standard conditions
- The energy transferred as heat is given by the equation; $q = mc\Delta T$
 - Where q is heat transferred (J), m is the mass of water (g), c is the specific heat capacity (J g⁻¹ K⁻¹), ∆T is the temperature change (°C)
- · Known quantities from the question
 - The total volume of the solution = 75 + 75 = 150 cm³
 - The density of the solution is assumed to be the same as water, 1 g cm⁻³
 - Specific heat capacity of the solution = 4.18 J g⁻¹ K⁻¹
 - o Temperature change = 14 °C
- · Substitution into the equation:

$$q = mc \Delta T = 150 \times 4.18 \times 14$$

- This gives the top line of the equation
- Divide this answer by the moles as the question asked for the molar enthalpy change.
 - Note: When given the concentrations of two solutions normally It would be the limiting reagent that is used to calculate the molar enthalpy.
- Here, both solutions react in a 1:1 molar ratio and are of the same concentration so we can just use the moles of one of them.
- · Calculating moles:

$$n = conc \times \frac{vol}{1000}$$

= 3.0 × $\frac{75}{1000}$ = 3.0 × 0.075

- This gives the bottom line of the equation add a minus sign as the reaction is exothermic (as the temperature rose)
- . Therefore the correct calculation is B:

$$-\frac{(150 \times 4.18 \times 14)}{(3.0 \times 0.075)} \text{J mol}^{-1}$$
For more help visit our website www.exampaperspractice.co.uk

The correct answer is C because:

- The standard enthalpy of formation (ΔH_f^Θ) is the enthalpy change when one mole of a compound is formed from its elements under standard conditions.
 - The reactants and products must be in their standard states.
- Enthalpy changes of formation can be exothermic or endothermic (+ /-)
- The standard enthalpy change of combustion (ΔH_c^Θ) is the enthalpy change when one mole of a substance is burnt in excess oxygen under standard conditions. The reactants and products must be in their standard states
- Enthalpy changes of combustion are always exothermic (-)
- The standard enthalpy change of neutralisation (ΔH^O_{neut}) is the enthalpy change when one mole of water is formed by the reaction of an acid with alkali under standard conditions.
- Enthalpy changes of neutralisation are always exothermic (-)

Exam Papers Practice

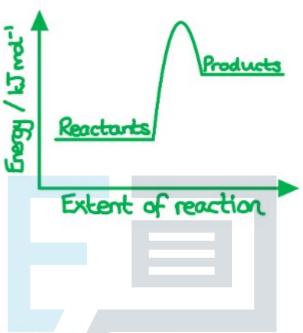
The correct answer is **B** because:

- The equation to calculate the heat energy absorbed is $q = mc\Delta T$
 - o m = the mass of water = b
 - o c = the specific heat capacity of water = d
 - ΔT = the temperature change = y

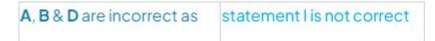
A is incorrect as	the mass of ethanol has been used, not the mass of water	
C is incorrect as	the temperature does not need adjusting as you have been given the temperature rise. This will be the same whether the units are °C or K	
D is incorrect as	the equation is incorrect and the mass of ethanol has been used and the temperature does not need adjusting	

Exam Papers Practice

The correct answer is C because:

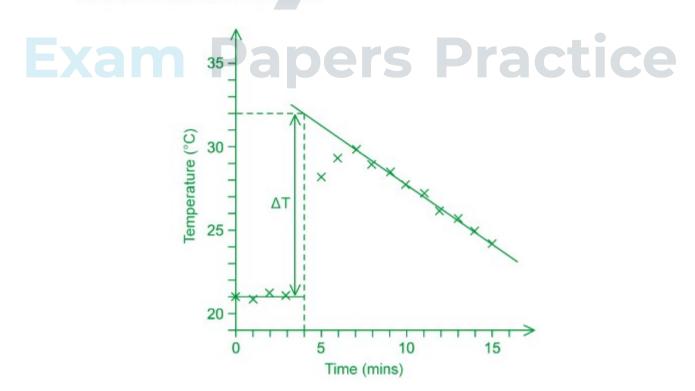

• The equation to calculate the heat energy absorbed is $q = mc\Delta T$

A is incorrect	the mass of iron has not been converted into g
as	Remember: The standard unit for mass, in chemistry, is g
B is incorrect as	the value for the specific heat capacity of water has been used in the calculation (4.18) rather than the specific heat capacity of iron that is given, e.g. $\Delta T = \frac{504}{110 \times 4.18}$
Dis	the calculation has been performed the
incorrect	wrong way up, e.g.
as	$\Delta T = \frac{110 \times 0.448}{504} = 9.78 \times 10^{-2} \mathrm{K}$



The correct answer is C because:

- Statement I is incorrect
 - The products are higher energy than the reactants which means that they are less stable
- Statement II is correct
 - Endothermic reactions have a positive enthalpy change
- Statement III is correct
 - The temperature of the surroundings decreases as the reaction absorbs thermal energy



The correct answer is A because:

- Statement l is correct
 - The density of the solution is assumed to be the same as water,
 i.e. 1 g cm⁻³
- · Statement II is correct
 - For the purposes of the calculation, the specific heat capacity of the solution is assumed to be the same as water, i.e. 4.18 J g⁻¹ K⁻¹
- Statement III is incorrect
 - One of the reactants is used in excess to ensure a complete reaction occurs
- B, C & D are incorrect as statement III is not correct

8

The correct answer is C because:

- The line through the points for 5 minutes onwards has to be extrapolated back past 4 minutes
- The initial temperature, at 4 minutes, is 21 °C
- The temperature from the extrapolated line at 4 minutes is ≈ 32 °C
- Therefore, the temperature change is 32 21 = 11 °C

A is incorrect as	this is the value that would be achieved by drawing a smooth curve through all the points for 5 minutes onwards and then extrapolating back to 4 minutes
B is incorrect as	this is the value calculated using the initial temperature and the maximum temperature achieved
D is incorrect as	this is the temperature that is read off the axis when the line through the points for 5 minutes onwards is extrapolated all the way back to the y-axis

The correct answer is C because: ers Practice

- The enthalpy change for all three reactions can be described as the enthalpy of reaction, ΔH^Θ_Γ
- · Reaction 1 is the neutralisation of nitric acid with ammonia
- Reaction 2 is the thermal decomposition of copper carbonate
- Reaction 3 is the combustion of sulfur AND the formation of sulfur dioxide

A , B & D are	reaction 2 is not combustion because
incorrect as	there is no reaction with oxygen and it
	is not formation because it starts
	from a compound

The correct answer is **B** because:

- An open system allows the transfer of matter and energy across the boundary
 - e. more reactants can be added to the reaction system and it can be heated / cooled
- A closed system only transfers energy across the boundary
 - o e the reaction system can be heated
- Isolated systems do not allow the transfer of matter or energy across the boundary
 - These systems are the rarest of the three systems

A, C & D are incorrect	statement II is
because	incorrect

Exam Papers Practice