铛
 EXAM PAPERS PRACTICE

Boost your performance and confidence with these topic-based exam questions

Practice questions created by actual examiners and assessment experts

Detailed mark scheme
Suitable for all boards
Designed to test your ability and thoroughly prepare you

5.1 Dierentiation

5.1.1 Introduction to Differentiation

Introduction to Derivatives

- Before intro ducing a derivative, an understanding of a limit is helpful

What is a limit?

- The limit of a function is the value a function (of \boldsymbol{X}) appro aches as \boldsymbol{X} appro aches a particular value from eitherside
- Limits are of interest when the function is undefined at a particular value
- For example, the function $f(x)=\frac{x^{4}-1}{x-1}$ will appro ach a limit as X approaches 1 from both below and abo ve but is undefined at $X=1$ as this would involve dividing byzero

What might I be asked about limits?

- You maybe asked to predict or estimate limits from a table of function values or from the graph of $y=f(x)$
- You maybe asked to use your GDC to plot the graph and use values from it to estimate a limit

What is a derivative?

- Calculus is about rates of change
- the waya car's position on a road changes is its speed (velocity)
- the waythe car's speed changes is its acceleration
- The gradient (rate of change) of a (non-linear) function varies with \boldsymbol{X}
- The derivative of a function is a function that relates the gradient to the value of \boldsymbol{X}

44 The derivative is also called the gradient function

How are limits and derivativeslinked?

- Considerthe point P onthe graph of $y=f(x)$ as shown below
- $\left[P Q_{i}\right]$ is a series of chords

- The gradient of the function $f(x)$ at the point P is equal to the gradient of the tangent at point P
- The gradient of the tangent at point P is the limit of the gradient of the chords $\left[P Q_{i}\right]$ as point
Q 'slides' down the curve and gets ever closerto point P
- The gradient of the function changes as \boldsymbol{X} changes
- The derivative is the function that calculates the gradient from the value \boldsymbol{X}

What is the notation for derivatives?

- Forthe function $y=f(x)$, the derivative, with respect to X, would be written as

$$
\frac{d y}{d x}=f^{\prime}(x)
$$

- Different variables may be used
- e.g. If $V=f(s)$ then $\frac{\mathrm{d} V}{\mathrm{~d} s}=f^{\prime}(s)$

Worked example

The graph of $y=f(x)$ where $f(x)=x^{3}-2$ passes through the points $P(2,6), A(2.3,10.167), B(2.1,7.261)$ and $C(2.05,6.615125)$.
a) Find the gradient of the chords $[P A],[P B]$ and $[P C]$.

Gradient of a line (chord) is " $\frac{y_{2}-y_{1} "}{x_{2}-x_{1}}$
[PA]: $\frac{10 \cdot 167-6}{2 \cdot 3-2}=13.89$
[PB]: $\frac{7 \cdot 261-6}{2.1-2}=12.61$
[PC]: $\frac{6.615125-6}{2.05-2}=12.3$

b) Estimate the gradient of the tangent to the curve at the point P.

There will be a limit the gradient of the chord reaches as the difference in the x-coordinates approaches zero.

$$
\text { Estimate of gradient of tangent at } x=2 \text { is } 12
$$

Differentiating Powers of x

What is differentiation?

- Differentiation is the process of finding an expression of the derivative (gradient function) from the expression of a function

How do Idifferentiate powers of x ?

- Powers of X are differentiated according to the following formula:
- If $f(x)=x^{n}$ then $f^{\prime}(x)=n x^{n-1}$ where $n \in \mathbb{Q}$
- This is given in the formula booklet
- If the power of \boldsymbol{X} is multiplied by a constant then the derivative is also multiplied by that constant
- If $f(x)=a x^{n}$ then $f^{\prime}(x)=a n x^{n-1}$ where $n \in \mathbb{Q}$ and a is a constant
- The alternative notation (to $f^{\prime}(x)$) is to use $\frac{d y}{d x}$
- If $y=a x^{n}$ then $\frac{d y}{d x}=a n x^{n-1}$
- e.g. If $y=-4 x^{\frac{1}{2}}$ then $\frac{d y}{d x}=-4 \times \frac{1}{2} \times x^{\frac{1}{2}-1}=-2 x^{-\frac{1}{2}}$
- Don't forget these two special cases:
- If $f(x)=a x$ then $f^{\prime}(x)=a$
- e.g. If $y=6 x$ then $\frac{d y}{d x}=6$
- If $f(x)=a$ then $f^{\prime}(x)=0$

Copyrig
e.g. If $y=5$ then $\frac{d y}{d x}=0$

- These allow you to differentiate linear terms in X and constants
- Functions involving roots will need to be rewritten as fractional po wers of \boldsymbol{X} first
- e.g. If $f(x)=2 \sqrt{x}$ then rewrite as $f(x)=2 x^{\frac{1}{2}}$ and differentiate
- Functions involving fractions with denominators in terms of X will need to be rewritten as negative powers of X first
- e.g. If $f(x)=\frac{4}{x}$ then rewrite as $f(x)=4 x^{-1}$ and differentiate

How doldifferentiate sums and differences of powers of x ?

- The formulae for differentiating powers of \boldsymbol{X} apply to all rational powers so it is possible to differentiate any expression that is a sum or difference of powers of X
- e.g. If $f(x)=5 x^{4}-3 x^{\frac{2}{3}}+4$ then

$$
\begin{aligned}
& f^{\prime}(x)=5 \times 4 x^{4-1}-3 \times \frac{2}{3} x^{\frac{2}{3}-1}+0 \\
& f^{\prime}(x)=20 x^{3}-2 x^{-\frac{1}{3}}
\end{aligned}
$$

- Products and quotients cannot be differentiated in this way so would need expanding/simplifying first
- e.g. If $f(x)=(2 x-3)\left(x^{2}-4\right)$ then expand to $f(x)=2 x^{3}-3 x^{2}-8 x+12$ which is a sum/difference of powers of X and can be differentiated

- Exam Tip

- A common mistake is not simplifying expressions before differentiating
- The derivative of $\left(x^{2}+3\right)\left(x^{3}-2 x+1\right)$ can not be found by multiplying the derivatives of $\left(x^{2}+3\right)$ and $\left(x^{3}-2 x+1\right)$

Worked example

The function $f(x)$ is given by

$$
f(x)=2 x^{3}+\frac{4}{\sqrt{x}}, \text { where } x>0
$$

Copyright

2024 Exam Papers Practice

Find the derivative of $f(x)$
Rewrite $f(x)$ so every term is a power of x

$$
f(x)=2 x^{3}+4 x^{-1 / 2}
$$

Differentiate by applying the formula

$$
\therefore f^{\prime}(x)=6 x^{2}-2 x^{-3 / 2}
$$

5.1.2 Applications of Differentiation

Finding Gradients

How dolfind the gradient of a curve at a point?

- The gradient of a curve at a point is the gradient of the tangent to the curve at that point
- Find the gradient of a curve at a point by substituting the value of \boldsymbol{X} at that point into the curve's derivative function
- For example, if $f(x)=x^{2}+3 x-4$
- then $f^{\prime}(x)=2 x+3$
- and the gradient of $y=f(x)$ when $x=1$ is $f^{\prime}(1)=2(1)+3=5$
- and the gradient of $y=f(x)$ when $x=-2$ is $f^{\prime}(-2)=2(-2)+3=-1$
- Although your GDC won't find a derivative function for you, it is possible to use your GDC to evaluate the derivative of a function at a point, using $\frac{d}{d x}(\square)_{X}=\square$

Worked example

A function is defined by $f(x)=x^{3}+6 x^{2}+5 x-12$.
(a) Find $f^{\prime}(x)$.

$$
\begin{aligned}
& \text { Find } f^{\prime}(x) \text { by differentiating } \\
& f^{\prime}(x)=3 x^{2}+2 \times 6 x^{\prime}+5 x^{0}
\end{aligned}
$$

Copyright

$$
f^{\prime}(x)=3 x^{2}+12 x+5
$$

(b) Hence show that the gradient of $y=f(x)$ when $x=1$ is 20 .

$$
\begin{aligned}
& \text { Substitute } x=1 \quad \text { into } f^{\prime}(x) \\
& \begin{aligned}
f^{\prime}(1) & =3(1)^{2}+12(1)+5 \\
& =3+12+5
\end{aligned}
\end{aligned}
$$

$$
f^{\prime}(1)=20
$$

(c) Find the gradient of $y=f(x)$ when $x=-2.5$.

Exam Papers Practice

Use the GDC to evaluate the derivative of $f(x)$ at $x=-2.5$

$\underset{\text { compant }}{\text { Exin Papers Practice }}$
© 2024 Exam Papers Practice

Increasing \& Decreasing Functions

What are increasing and decreasing functions?

- A function, $f(x)$, is increasing if $\boldsymbol{f}^{\prime}(\boldsymbol{x})>\mathbf{0}$
- This means the value of the function ('output') increases as X increases
- A function, $f(x)$, is decreasing if $\boldsymbol{f}^{\prime}(\boldsymbol{x})<\mathbf{0}$
- This means the value of the function ('output') decreases as X increases
- A function, $f(\boldsymbol{X})$, is stationary if $\boldsymbol{f}^{\prime}(\boldsymbol{X})=\mathbf{0}$

How do I find where functions are increasing, decreasing or stationary?

- Toidentifythe intervals on which a function is increasing ordecreasing

STEP 1
Find the derivative $\mathrm{f}^{\prime}(x)$
STEP 2
Solve the inequalities
$\boldsymbol{f}^{\prime}(\boldsymbol{x})>\mathbf{0}$ (for increasing intervals) and/or
$\boldsymbol{f}^{\prime}(\boldsymbol{x})<\mathbf{0}$ (for decreasing intervals)

- Most functions are a combinatio n of increasing, decreasing and stationary
- a range of values of \boldsymbol{X} (interval) is given where a function satisfies each condition
- e.g. The function $f(x)=x^{2}$ has derivative $f^{\prime}(x)=2 x$ so
- $f(x)$ is decreasing for $X<0$
- $f(x)$ is stationary at $X=0$
- $f(x)$ is increasing for $X>0$

Exam Papers Practice

Worked example

$$
f(x)=x^{2}-x-2
$$

a) Determine whether $f(x)$ is increasing or decreasing at the points where $x=0$ and $x=3$.

Differentiate

$$
f^{\prime}(x)=2 x-1
$$

At $x=0, f^{\prime}(0)=2 \times 0-1=-1<0$: decreasing
At $x=3, f^{\prime}(3)=2 \times 3-1=5>0 \quad \therefore$ increasing

\therefore At $x=0, f(x)$ is decreasing At $x=3, f(x)$ is increasing

b) Find the values of X for which $f(x)$ is an increasing function.

$$
\begin{aligned}
f^{\prime}(x) & >0 \\
2 x-1 & >0 \\
x & >1 / 2
\end{aligned}
$$

$$
\therefore f(x) \text { is increasing for } x>\frac{1}{2}
$$

Tangents \& Normals

What is a tangent?

- At any point on the graph of a (non-linear) function, the tangent is the straight line that touches the graph at a point without crossing through it
- Its gradient is given bythe derivative function

How dolfind the equation of a tangent?

- To find the equation of a straight line, a point and the gradient are needed

2024e gradient, \boldsymbol{m}, of the tangent to the function $\boldsymbol{y}=f(\boldsymbol{x})$ at $\left(x_{1}, y_{1}\right)$ is $\boldsymbol{f}^{\prime}\left(\boldsymbol{x}_{\mathbf{1}}\right)$

- Therefore find the equation of the tangent to the function $y=f(x)$ at the point $\left(x_{1}, y_{1}\right)$ by substituting the gradient, $f^{\prime}\left(x_{1}\right)$, and point $\left(x_{1}, y_{1}\right)$ into $y-y_{1}=m\left(x-x_{1}\right)$, giving:
- $y-y_{1}=\boldsymbol{f}^{\prime}\left(\boldsymbol{x}_{1}\right)\left(x-x_{1}\right)$
- (You could also substitute into $y=m x+c$ but it is usually quicker to substitute into $\left.y-y_{1}=m\left(x-x_{1}\right)\right)$

What is a normal?

- At anypoint on the graph of a (non-linear) function, the normal is the straight line that passes through that point and is perpendicular to the tangent

How dol find the equation of a normal?

- The gradient of the normal to the function $y=f(x)$ at $\left(x_{1}, y_{1}\right)$ is $\frac{\mathbf{- 1}}{\boldsymbol{f}^{\prime}\left(\boldsymbol{x}_{1}\right)}$
- Therefore find the equation of the normal to the function $y=f(x)$ at the point $\left(x_{1}, y_{1}\right)$ by using

$$
y-y_{1}=\frac{-1}{\boldsymbol{f}^{\prime}\left(\boldsymbol{x}_{1}\right)}\left(x-x_{1}\right)
$$

- Exam Tip

- You are not given the formula for the equation of a tangent or the equation of a normal
- But both can be derived from the equations of a straight line which are given in the formula booklet

Worked example

The function $\mathrm{f}(x)$ is defined by

$$
\mathrm{f}(x)=2 x^{4}+\frac{3}{x^{2}} \quad x \neq 0
$$

a) Find an equation for the tangent to the curve $y=\mathrm{f}(\boldsymbol{x})$ at the point where $\boldsymbol{X}=1$, giving your answer in the form $y=m x+c$.

First find $f^{\prime}(x)$ by differentiating

$$
\begin{aligned}
& f(x)=2 x^{4}+3 x^{-2} \quad \text { Rewrite os powers of } x \\
& f^{\prime}(x)=8 x^{3}-6 x^{-3} \\
& \text { For a tangent. " } y-y_{1}=f(0)(x-x,)^{\prime \prime} \\
& \text { At } x=1, y=2(1)^{4}+\frac{3}{(1)^{2}}=5 \\
& \qquad f^{\prime}(1)=8(1)^{3}-\frac{6}{(1)^{3}}=2 \\
& \therefore y-5=2(x-1) \\
& \text { Tangent at } x=1 \text {, is } y=2 x+3
\end{aligned}
$$

b) Find an equation for the normal at the po int where $X=1$, giving your answer in the form $a x+b y+d=0$, where a, b and d are integers.

$$
\text { For a normal, " } y-y_{1}=\frac{-1}{f^{\prime}(a)}\left(x-x_{1}\right) \text { " }
$$

Using results from part (a):

$$
y-5=\frac{-1}{2}(x-1)
$$

$$
y=-\frac{1}{2} x+\frac{11}{2}
$$

$$
2 y=-x+11
$$

\therefore Equation of normal is $x+2 y-11=0$

