

Boost your performance and confidence with these topic-based exam questions

Practice questions created by actual examiners and assessment experts

Detailed mark scheme

Suitable for all boards

Designed to test your ability and thoroughly prepare you

5.1 Dierentiation

IB Maths - Revision Notes

AA HL

5.1.1 Introduction to Differentiation

Introduction to Derivatives

■ Before introducing a **derivative**, an understanding of a **limit** is helpful

What is a limit?

- The limit of a function is the value a function (of X) approaches as X approaches a particular value from either side
 - Limits are of interest when the function is undefined at a particular value
 - For example, the function $f(x) = \frac{x^4 1}{x 1}$ will approach a limit as X approaches 1 from both below and above but is undefined at X = 1 as this would involve dividing by zero

What might I be asked about limits?

- You may be asked to predict or estimate limits from a table of function values or from the graph of y = f(x)
- You may be asked to use your GDC to plot the graph and use values from it to estimate a limit

What is a derivative?

- Calculus is about rates of change
 - the way a car's position on a road changes is its speed (velocity)
 - the way the car's speed changes is its acceleration
- ullet The **gradient** (rate of change) of a (non-linear) **function** varies with X
- Copy \blacksquare The **derivative** of a function is a function that relates the **gradient** to the value of X
- 20.4 The derivative is also called the **gradient function**

How are limits and derivatives linked?

- Consider the point P on the graph of y = f(x) as shown below
 - $[PQ_i]$ is a series of chords

- The gradient of the function f(x) at the point P is equal to the gradient of the tangent at point P
- The **gradient** of the **tangent** at point P is the **limit** of the **gradient** of the chords $[PQ_i]$ as point

Q 'slides' down the curve and gets ever closer to point P

- The **gradient** of the function changes as X changes
- \odot 202 The **derivative** is the function that calculates the gradient from the value X

What is the notation for derivatives?

• For the function y = f(x), the **derivative**, with respect to x, would be written as

$$\frac{\mathrm{d}y}{\mathrm{d}x} = f'(x)$$

Different variables may be used

• e.g. If
$$V = f(s)$$
 then $\frac{\mathrm{d}V}{\mathrm{d}s} = f'(s)$

Worked example

The graph of y = f(x) where $f(x) = x^3 - 2$ passes through the points P(2, 6), A(2.3, 10.167), B(2.1, 7.261) and C(2.05, 6.615125).

a) Find the gradient of the chords [PA], [PB] and [PC].

Gradient of a line (chord) is "
$$\frac{y_2-y_1}{x_2-x_1}$$
"

$$[PA]: 10.167-6 = 13.89$$

$$[PB]: \frac{7.261-6}{2.1-2} = 12.61$$

$$[PC]: \frac{6.615125-6}{2.05-2} = 12.3$$

Gradient of chords are: [PA] 13.89

[PB] 12.61

[PC] 12.3025

Practice

Copyright Estimate the gradient of the tangent to the curve at the point P. \bigcirc 2024 Exam Papers Practice

There will be a limit the gradient of the chord reaches as the difference in the x-coordinates approaches zero.

Estimate of gradient of tangent at x=2 is 12

Differentiating Powers of x

What is differentiation?

■ **Differentiation** is the process of finding an expression of the **derivative** (**gradient function**) from the expression of a function

How do I differentiate powers of x?

- Powers of X are differentiated according to the following formula:
 - If $f(x) = x^n$ then $f'(x) = nx^{n-1}$ where $n \in \mathbb{Q}$
 - This is given in the formula booklet
- If the power of X is multiplied by a constant then the derivative is also multiplied by that constant
 - If $f(x) = ax^n$ then $f'(x) = anx^{n-1}$ where $n \in \mathbb{Q}$ and a is a constant
- The alternative notation (to f'(x)) is to use $\frac{dy}{dx}$
 - If $y = ax^n$ then $\frac{\mathrm{d}y}{\mathrm{d}x} = anx^{n-1}$

• e.g. If
$$y = -4x^{\frac{1}{2}}$$
 then $\frac{dy}{dx} = -4 \times \frac{1}{2} \times x^{\frac{1}{2} - 1} = -2x^{-\frac{1}{2}}$

- Don't forget these two special cases:
 - If f(x) = ax then f'(x) = a

e.g. If
$$y = 6x$$
 then $\frac{dy}{dx} = 6$
If $f(x) = a$ then $f'(x) = 0$

Copyright © 2024 Exam Papers
$$y=5$$
 then $\frac{dy}{dx}=0$

- These allow you to differentiate linear terms in X and constants
- Functions involving **roots** will need to be rewritten as **fractional powers** of **X** first

• e.g. If
$$f(x) = 2\sqrt{x}$$
 then rewrite as $f(x) = 2x^{\frac{1}{2}}$ and differentiate

- Functions involving fractions with denominators in terms of X will need to be rewritten as
 negative powers of X first
 - e.g. If $f(x) = \frac{4}{x}$ then rewrite as $f(x) = 4x^{-1}$ and differentiate

How do I differentiate sums and differences of powers of x?

■ The formulae for differentiating powers of X apply to all rational powers so it is possible to differentiate any expression that is a sum or difference of powers of X

e.g. If
$$f(x) = 5x^4 - 3x^{\frac{2}{3}} + 4$$
 then
$$f'(x) = 5 \times 4x^{4-1} - 3 \times \frac{2}{3}x^{\frac{2}{3}-1} + 0$$

$$f'(x) = 20x^3 - 2x^{-\frac{1}{3}}$$

- Products and quotients cannot be differentiated in this way so would need expanding/simplifying first
 - e.g. If $f(x) = (2x-3)(x^2-4)$ then expand to $f(x) = 2x^3 3x^2 8x + 12$ which is a sum/difference of powers of X and can be differentiated

Exam Tip

- A common mistake is not simplifying expressions before differentiating
 - The derivative of $(x^2 + 3)(x^3 2x + 1)$ can **not** be found by multiplying the derivatives of $(x^2 + 3)$ and $(x^3 - 2x + 1)$

Worked example

The function f(x) is given by

$$f(x) = 2x^3 + \frac{4}{\sqrt{x}}$$
, where $x > 0$

Find the derivative of f(x)

Rewrite f(x) so every term is a power of ∞ $f(x) = 2x^3 + 4x^{-\frac{1}{2}}$

$$f'(x) = 6x^2 - 2x^{-3/2}$$

Differentiate by applying the formula
$$f'(x) = 6x^2 - 2x^{-3/2}$$
take care with negatives
$$-\frac{1}{2} - 1 = -\frac{3}{2}$$

$$\therefore f'(x) = 6x^2 - 2x^{-\frac{3}{2}}$$

5.1.2 Applications of Differentiation

Finding Gradients

How do I find the gradient of a curve at a point?

- The gradient of a curve at a point is the gradient of the tangent to the curve at that point
- Find the gradient of a curve at a point by substituting the value of **X** at that point into the curve's derivative function
- For example, if $f(x) = x^2 + 3x 4$
 - then f'(x) = 2x + 3
 - and the gradient of y = f(x) when x = 1 is f'(1) = 2(1) + 3 = 5
 - and the gradient of y = f(x) when x = -2 is f'(-2) = 2(-2) + 3 = -1
- Although your GDC won't find a derivative function for you, it is possible to use your GDC to

evaluate the derivative of a function at a point, using $\frac{d}{dx}()_{x=0}$

Worked example

A function is defined by $f(x) = x^3 + 6x^2 + 5x - 12$

(a) Find f'(x).

Copyright

© 2024 Exam Papers Practice
$$f'(x) = 3x^2 + 12x + 5$$

(b) Hence show that the gradient of y = f(x) when x = 1 is 20.

Substitute
$$x = 1$$
 into $f'(x)$
 $f'(1) = 3(1)^2 + 12(1) + 5$
 $= 3 + 12 + 5$
 $f'(1) = 20$

(c) Find the gradient of y = f(x) when x = -2.5.

Use the GDC to evaluate the derivative of f(x) at x = -2.5

Exam Papers Practice

© 2024 Exam Papers Practice

Increasing & Decreasing Functions

What are increasing and decreasing functions?

- A function, f(x), is increasing if f'(x) > 0
 - This means the value of the function ('output') increases as X increases
- A function, f(x), is decreasing if f'(x) < 0
 - This means the value of the function ('output') decreases as X increases
- A function, f(x), is stationary if f'(x) = 0

How do I find where functions are increasing, decreasing or stationary?

Copyright

© 2024 Exar Ploidentify the intervals on which a function is increasing or decreasing

STEP1

Find the derivative f'(x)

STEP 2

Solve the inequalities

f'(x) > 0 (for increasing intervals) and/or

f'(x) < 0 (for decreasing intervals)

- Most functions are a combination of increasing, decreasing and stationary
 - a range of values of X (interval) is given where a function satisfies each condition
 - e.g. The function $f(x) = x^2$ has derivative f'(x) = 2x so
 - f(x) is decreasing for x < 0
 - f(x) is stationary at x = 0
 - f(x) is increasing for x > 0

Worked example

$$f(x) = x^2 - x - 2$$

Determine whether f(x) is increasing or decreasing at the points where x = 0 and x = 3.

Differentiate

$$f'(\infty) = 2\infty - 1$$

At
$$x = 0$$
, $f'(0) = 2x0 - 1 = -1 < 0 : decreosing$

At
$$x=3$$
, $f'(3)=2x3-1=5>0 : increasing$

.. At
$$x=0$$
, $f(x)$ is decreasing

At
$$x=3$$
, $f(x)$ is increosing

b) Find the values of X for which f(X) is an increasing function.

Exam Papers Practice

Copyright f(x) is increasing when f'(x) > 0 0 2024 Exam Paper f'(x) > 0

$$f'(\infty) > 0$$

$$2\infty - 1 > 0$$

:
$$f(x)$$
 is increasing for $x > \frac{1}{2}$

Tangents & Normals

What is a tangent?

- At any point on the graph of a (non-linear) function, the tangent is the straight line that touches
 the graph at a point without crossing through it
- Its gradient is given by the derivative function

How do I find the equation of a tangent?

- To find the equation of a straight line, a point and the gradient are needed
- The gradient, m, of the tangent to the function y = f(x) at (x_1, y_1) is $f'(x_1)$
 - Therefore find the **equation** of the **tangent** to the function y = f(x) at the point (x_1, y_1) by substituting the gradient, $f'(x_1)$, and point (x_1, y_1) into $y y_1 = m(x x_1)$, giving:

$$y-y_1 = f'(x_1)(x-x_1)$$

• (You could also substitute into y = mx + c but it is usually quicker to substitute into $y - y_1 = m(x - x_1)$)

What is a normal?

• At any point on the graph of a (non-linear) function, the **normal** is the straight line that passes through that point and is **perpendicular** to the **tangent**

How do I find the equation of a normal?

- The gradient of the normal to the function y = f(x) at (x_1, y_1) is $\frac{-1}{f'(x_1)}$
- Therefore find the **equation** of the **normal** to the function y = f(x) at the point (x_1, y_1) by using by right

© 2024
$$y$$
 ary $P = \frac{-1}{f'(x_1)}$

Exam Tip

- You are not given the formula for the equation of a tangent or the equation of a normal
- But both can be derived from the equations of a straight line which are given in the formula booklet

Worked example

The function f(x) is defined by

$$f(x) = 2x^4 + \frac{3}{x^2}$$
 $x \neq 0$

Find an equation for the tangent to the curve y = f(x) at the point where x = 1, giving your answer in the form y = mx + c.

First find
$$f'(x)$$
 by differentiating
$$f(x) = 2x^{1/2} + 3x^{-2}$$
Rewrite as powers of x

$$f'(x) = 8x^3 - 6x^{-3}$$
For a tangent, "y-y₁ = $f(a)(x-x_1)$ "
At $x=1$, $y=2(1)^{1/2}+\frac{3}{(1)^2}=5$

$$f'(1) = 8(1)^3 - \frac{6}{(1)^3}=2$$

$$\therefore y-5=2(x-1)$$
Tangent at $x=1$, is $y=2x+3$

Find an equation for the normal at the point where x=1, giving your answer in the form ax+by+d=0, where a,b and d are integers.

© 2024 Exam Papers Practice

For a normal, "y-y1 =
$$\frac{-1}{f'(a)}(x-x_1)$$
"

Using results from part (a):

$$y-5 = \frac{-1}{2}(x-1)$$

$$y = -\frac{1}{2}x + \frac{11}{2}$$

$$2y = -x + 11$$

"Equation of normal is x+2y-11=0