Boost your performance and confidence with these topic-based exam questions

Practice questions created by actual examiners and assessment experts

Detailed mark scheme
Suitable for all boards
Designed to test your ability and thoroughly prepare you

5.1 Differentiation

5.1.1 Introduction to Differentiation

Introduction to Derivatives

- Before intro ducing a derivative, an understanding of a limit is helpful

What is a limit?

- The limit of a function is the value a function (of \boldsymbol{X}) appro aches as \boldsymbol{X} appro aches a particular value from eitherside
- Limits are of interest when the function is undefined at a particular value
- For example, the function $f(x)=\frac{x^{4}-1}{x-1}$ will appro ach a limit as X approaches 1 from both below and abo ve but is undefined at $X=1$ as this would involve dividing byzero

What might I be asked about limits?

- You may be asked to predict or estimate limits from a table of function values or from the graph of $y=f(x)$
- You maybe asked to use your GDC to plot the graph and use values from it to estimate a limit

What is a derivative?

- Calculus is about rates of change
- the waya car's position on a road changes is its speed (velocity)
- the waythe car's speed changes is its acceleration
- The gradient (rate of change) of a (non-linear) function varies with \boldsymbol{X}
- The derivative of a function is a function that relates the gradient to the value of \boldsymbol{X}

44 The derivative is also called the gradient function

How are limits and derivativeslinked?

- Considerthe point P onthe graph of $y=f(x)$ as shown below
- $\left[P Q_{i}\right]$ is a series of chords

- The gradient of the function $f(x)$ at the point P is equal to the gradient of the tangent at point P
- The gradient of the tangent at point P is the limit of the gradient of the chords $\left[P Q_{i}\right]$ as point Q 'slides'down the curve and gets ever closerto point P
- The gradient of the function changes as \boldsymbol{X} changes
- The derivative is the function that calculates the gradient from the value \boldsymbol{X}

What is the not ation for derivatives?

- For the function $y=f(x)$, the derivative, with respect to X, would be written as

Copyright
© 2024 Exam Papers Practice

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=f^{\prime}(x)
$$

- Different variables may be used
- e.g. If $V=f(s)$ then $\frac{\mathrm{d} V}{\mathrm{~d} s}=f^{\prime}(s)$

Worked example

The graph of $y=f(x)$ where $f(x)=x^{3}-2$ passes through the points $P(2,6), A(2.3,10.167), B(2.1,7.261)$ and $C(2.05,6.615125)$.
a) Find the gradient of the chords $[P A],[P B]$ and $[P C]$.

$$
\text { Gadient of a line (chord) is " } \frac{y_{2}-y_{1} \text { " }}{x_{2}-x_{1}}
$$

$$
[P A]: \frac{10 \cdot 167-6}{2 \cdot 3-2}=13.89
$$

$$
[P B]: \frac{7.261-6}{2.1-2}=12.61
$$

$$
[P C]: \frac{6.615125-6}{2.05-2}=12.3
$$

Gradient of chords are: [PA] 13.89
[PB] 12.61
[PC] 12.3025

b) Estimate the gradient of the tangent to the curve at the point P.

There will be a limit the gradient of the chord reaches os the difference in the x-coordinates approacheo zero.

$$
\text { Estimate of gradient of tangent at } x=2 \text { is } 12
$$

Differentiating Powers of x

What is differentiation?

- Differentiation is the process of finding an expression of the derivative (gradient function) from the expression of a function

How doldifferentiate powers of x ?

- Powers of X are differentiated according to the following formula:
- If $f(x)=x^{n}$ then $f^{\prime}(x)=n x^{n-1}$ where $n \in \mathbb{Q}$
- This is given in the formula booklet
- If the power of \boldsymbol{X} is multiplied by a constant then the derivative is also multiplied by that constant
- If $f(x)=a x^{n}$ then $f^{\prime}(x)=a n x^{n-1}$ where $\eta \in \mathbb{Q}$ and a is a constant
- The alternative notation (to $f^{\prime}(x)$) is to use $\frac{\mathrm{d} y}{\mathrm{~d} x}$
- If $y=a x^{n}$ then $\frac{\mathrm{d} y}{\mathrm{~d} x}=a n x^{n-1}$
- e.g. If $y=-4 x^{\frac{1}{2}}$ then $\frac{d y}{d x}=-4 \times \frac{1}{2} \times x^{\frac{1}{2}-1}=-2 x^{-\frac{1}{2}}$
- Don't forget these two special cases:
- If $f(x)=a x$ then $f^{\prime}(x)=a$
- e.g. If $y=6 x$ then $\frac{d y}{d x}=6$
- If $f(x)=a$ then $f^{\prime}(x)=0$

Copyright

- e.g. If $y=5$ then $\frac{d y}{d x}=0$
- These allow you to differentiate linear terms in X and constants
- Functions involving roots will need to be rewritten as fractional powers of \boldsymbol{X} first
- e.g. If $f(x)=2 \sqrt{X}$ then rewrite as $f(x)=2 x^{\frac{1}{2}}$ and differentiate
- Functions involving fractions with denominators in terms of X will need to be rewritten as negative powers of \boldsymbol{X} first
- e.g. If $f(x)=\frac{4}{x}$ then rewrite as $f(x)=4 x^{-1}$ and differentiate

How doldifferentiate sums and differences of powers of x ?

- The formulae for differentiating powers of \boldsymbol{X} apply to all rational powers so it is possible to differentiate any expression that is a sum or difference of powers of \boldsymbol{X}
- e.g. If $f(x)=5 x^{4}-3 x^{\frac{2}{3}}+4$ then

$$
\begin{aligned}
& f^{\prime}(x)=5 \times 4 x^{4-1}-3 \times \frac{2}{3} x^{\frac{2}{3}-1}+0 \\
& f^{\prime}(x)=20 x^{3}-2 x^{-\frac{1}{3}}
\end{aligned}
$$

- Products and quotients cannot be differentiated in this way so would need expanding/simplifying first
- e.g. If $f(x)=(2 x-3)\left(x^{2}-4\right)$ then expand to $f(x)=2 x^{3}-3 x^{2}-8 x+12$ which is a sum/difference of powers of \boldsymbol{X} and can be differentiated

© Exam Tip

- A common mistake is not simplifying expressions before differentiating
- The derivative of $\left(x^{2}+3\right)\left(x^{3}-2 x+1\right)$ can not be found by multiplying the derivatives of $\left(x^{2}+3\right)$ and $\left(x^{3}-2 x+1\right)$

Worked example

The function $f(x)$ is given by

$$
f(x)=2 x^{3}+\frac{4}{\sqrt{x}}, \text { where } x>0
$$

Find the derivative of $f(x)$

$$
\begin{aligned}
& \text { Rewrite } f(x) \text { so every term is a power of } x \\
& f f(x)=2 x^{3}+4 x^{-1 / 2} \\
& \text { Differentiate by applying the formula } \\
& f^{\prime}(x)=6 x^{2}-2 x^{-3 / 2} \\
& \text { an } x^{n-1} \\
& \therefore \quad \begin{array}{l}
\text { take care with negatives } \\
-\frac{1}{2}-1=-\frac{3}{2}
\end{array} \\
& \therefore f^{\prime}(x)=6 x^{2}-2 x^{-\frac{3}{2}}
\end{aligned}
$$

5.1.2 Applications of Differentiation

Finding Gradients

How dolfind the gradient of a curve at a point?

- The gradient of a curve at a point is the gradient of the tangent to the curve at that point
- Find the gradient of a curve at a point by substituting the value of \boldsymbol{X} at that point into the curve's derivative function
- For example, if $f(x)=x^{2}+3 x-4$
- then $f^{\prime}(x)=2 x+3$
- and the gradient of $y=f(x)$ when $x=1$ is $f^{\prime}(1)=2(1)+3=5$
- and the gradient of $y=f(x)$ when $x=-2$ is $f^{\prime}(-2)=2(-2)+3=-1$
- Although your GDC won't find a derivative function for you, it is possible to use your GDC to evaluate the derivative of a function at a point, using $\frac{d}{d x}(\square)_{X}=\square$

Worked example

A function is defined by $f(x)=x^{3}+6 x^{2}+5 x-12$.
(a) Find $f^{\prime}(x)$.

$$
\begin{aligned}
& \text { Find } f^{\prime}(x) \text { by differentiating } \\
& f^{\prime}(x)=3 x^{2}+2 \times 6 x^{\prime}+5 x^{0}
\end{aligned}
$$

Copyright

$$
f^{\prime}(x)=3 x^{2}+12 x+5
$$

(b) Hence show that the gradient of $y=f(x)$ when $x=1$ is 20 .

$$
\begin{aligned}
& \text { Substitute } x=1 \text { into } f^{\prime}(x) \\
& \begin{aligned}
f^{\prime}(1) & =3(1)^{2}+12(1)+5 \\
& =3+12+5
\end{aligned}
\end{aligned}
$$

$$
f^{\prime}(1)=20
$$

(c) Find the gradient of $y=f(x)$ when $x=-2.5$.

Exam Papers Practice

Use the GDC to evaluate the derivative of $f(x)$ at $x=-2.5$

$$
f^{\prime}(-2 \cdot 5)=-6 \cdot 25
$$

Exam Papers Practice
© 2024 Exam Papers Practice

Increasing \& Decreasing Functions

What are increasing and decreasing functions?

- A function, $f(x)$, is increasing if $\boldsymbol{f}^{\prime}(\boldsymbol{x})>\mathbf{0}$
- This means the value of the function('output') increases as X increases
- A function, $f(x)$, is decreasing if $\boldsymbol{f}^{\prime}(\boldsymbol{x})<\mathbf{0}$
- This means the value of the function('output') decreases as X increases
- A function, $f(x)$, is stationary if $\boldsymbol{f}^{\prime}(\boldsymbol{x})=\mathbf{0}$

How dolfind where functions are increasing, decreasing or stationary?

- To identify the intervals on which a function is increasing ordecreasing

STEP 1
Find the derivative $\mathrm{f}^{\prime}(\boldsymbol{x})$
STEP 2
Solve the inequalities
$\boldsymbol{f}^{\prime}(\boldsymbol{x})>\mathbf{0}$ (for increasing intervals) and/or
$\boldsymbol{f}^{\prime}(\boldsymbol{x})<\mathbf{0}$ (fordecreasing intervals)

- Most functions are a combination of increasing, decreasing and stationary
- a range of values of \boldsymbol{X} (interval) is given where a function satisfies each condition
- e.g. The function $f(x)=x^{2}$ has derivative $f^{\prime}(x)=2 x$ so
- $f(x)$ is decreasing for $x<0$
- $f(x)$ is statio nary at $X=0$
- $f(x)$ is increasing for $x>0$

Exam Papers Practice

Worked example

$$
f(x)=x^{2}-x-2
$$

a) Determine whether $f(x)$ is increasing or decreasing at the points where $X=0$ and $X=3$. Differentiate

$$
f^{\prime}(x)=2 x-1
$$

At $x=0, f^{\prime}(0)=2 \times 0-1=-1<0 \quad \therefore$ decreasing At $x=3, \quad f^{\prime}(3)=2 \times 3-1=6>0 \quad \therefore$ increasing
\therefore At $x=0, f(x)$ is decreasing At $x=3, f(x)$ is increasing
b) Find the values of X for which $f(x)$ is an increasing function.
$f(x)$ is increasing when $f^{\prime}(x)>0$ Copyright
Q 2024 Exam Papers P

$$
\begin{aligned}
f^{\prime}(x) & >0 \\
2 x-1 & >0 \\
x & >1 / 2
\end{aligned}
$$

$$
\therefore f(x) \text { is increasing for } x>\frac{1}{2}
$$

Tangents \& Normals

What is a tangent?

- At any point on the graph of a (non-linear) function, the tangent is the straight line that touches the graph at o nly that point
- Its gradient is given by the derivative function

How dolfind the equation of a tangent?

- To find the equatio n of a straight line, a point and the gradient are needed

202 The gradient, m, of the tangent to the function $y=f(x)$ at $\left(x_{1}, y_{1}\right)$ is $\boldsymbol{f}^{\prime}\left(\boldsymbol{x}_{\mathbf{1}}\right)$

- Therefore find the equation of the tangent to the function $y=f(x)$ at the point $\left(x_{1}, y_{1}\right)$ by substituting the gradient, $f^{\prime}\left(x_{1}\right)$, and point $\left(x_{1}, y_{1}\right)$ into $y-y_{1}=m\left(x-x_{1}\right)$, giving:
- $y-y_{1}=\boldsymbol{f}^{\prime}\left(\boldsymbol{x}_{1}\right)\left(x-x_{1}\right)$
- (You could also substitute into $y=m x+c$ but it is us ually quicker to substitute into $y-y_{1}=m\left(x-x_{1}\right)$

What is a normal?

- At anypoint on the graph of a (non-linear) function, the normal is the straight line that passes through that point and is perpendicular to the tangent

How dolfind the equation of a normal?

- The gradient of the normal to the function $y=f(x)$ at $\left(x_{1}, y_{1}\right)$ is $\frac{-1}{\boldsymbol{f}^{\prime}\left(\boldsymbol{x}_{1}\right)}$
- Therefore find the equation of the normal to the function $y=f(x)$ at the point $\left(x_{1}, y_{1}\right)$ byusing

$$
y-y_{1}=\frac{-1}{\boldsymbol{f}^{\prime}\left(\boldsymbol{x}_{1}\right)}\left(x-x_{1}\right)
$$

(-) Exam Tip

- You are not given the formula for the equation of a tangent or the equation of a normal
- But both can be derived from the equations of a straight line which are given in the formula booklet

Worked example

The function $\mathrm{f}(x)$ is defined by

$$
\mathrm{f}(x)=2 x^{4}+\frac{3}{x^{2}} \quad x \neq 0
$$

a) Find an equation for the tangent to the curve $y=\mathrm{f}(x)$ at the po int where $x=1$, giving your answer in the form $y=m x+c$.

First find $f^{\prime}(x)$ by differentiating

$$
\begin{aligned}
& f(x)=2 x^{4}+3 x^{-2} \quad \text { Rewrite os powers of } x \\
& f^{\prime}(x)=8 x^{3}-6 x^{-3}
\end{aligned}
$$

$$
\text { For a tangent. " } y-y_{1}=f(a)\left(x-x_{1}\right) \text { " }
$$

$$
\text { At } x=1, y=2(1)^{4}+\frac{3}{(1)^{2}}=5
$$

$$
f^{\prime}(1)=8(1)^{3}-\frac{6}{(1)^{3}}=2
$$

$$
\therefore y-5=2(x-1)
$$

$$
\text { Tangent at } x=1 \text {, is } y=2 x+3
$$

b) Find an equation for the normal at the point where $X=1$, giving your answer in the form $a x+b y+d=0$, where a, b and d are integers.
© 2024 Exam Papers Practice
For a normal, " $y-y_{1}=\frac{-1}{f^{\prime}(a)}\left(x-x_{1}\right)^{\prime \prime}$
Using results from part (a): $y-5=\frac{-1}{2}(x-1)$ $y=-\frac{1}{2} x+\frac{11}{2}$

$$
2 y=-x+11
$$

\therefore Equation of normal is $x+2 y-11=0$

Local Minimum \& Maximum Points

What are local minimumand maximumpoints?

- Local minimum and maximum points are two types of stationary point
- The gradient function (derivative) at such points equals zero
i.e. $f^{\prime}(x)=0$
- A lo cal minimum point, $(x, f(x))$ will be the lo west value of $f(x)$ in the local vic inity of the value of X
- The function may reach a lo wer value further afield
- Similarly, a local maximum point, $(X, f(x))$ will be the greatest value of $f(x)$ in the lo cal vicinity of the value of \boldsymbol{X}
- The function may reach a greater value further afield
- The graphs of many functions tend to infinity forlarge values of \boldsymbol{X}
(and/or minus infinity for large negative values of \boldsymbol{X})
- The nature of a stationary point refers to whetherit is a local minimum orlocal maximum point

How dolfind the coordinates and nature of stationary points?

- The instructions below describe how to find local minimum and maximumpoints using a GDC on the graph of the function $y=f(x)$.

STEP 1

Plot the graph of $y=f(x)$
Sketch the graph as part of the solution

STEP 2

Use the options from the graphing screen to "solve for minimum"
The GDC will dis play the \boldsymbol{X} and \boldsymbol{y} coordinates of the first minimum point
Scroll onwards to see there are anymo re minimum points
Note down the coordinates and the type of stationary point

STEP 3

Repeat STEP 2 but use "solve for maximum" on your GDC

- In STEP 2 the nature of the stationary point should be easy to tell from the graph
- a local minimum changes the function from decreasing to increasing
- the gradient changes from negative to positive
- alocal maximum changes the function fromincreasing to decreasing
- the gradient changes frompositive to negative

Exam Papers Practice

Exam Papers
Copyright
© 2024 Exam Papers Practice

Exam Papers Practice

Worked example

Find the station nary points of $f(x)=x\left(x^{2}-27\right)$, and state their nature.

Plot the graph of $y=x\left(x^{2}-27\right)$ on GDC and sketch here. local
\therefore Stationary points are
(3,-54) Lo cob minimum point (-3,5w) LOCAL mAXImum POINT

5.1.3 Modelling with Differentiation

Modelling with Differentiation

What can be modelled with differentiation?

- Recall that differentiation is about the rate of change of a function and provides a way of finding minimum and maximum values of a function
- Anything that involves maximising or minimising a quantity can be mo delled using differentiation; for example
- minimising the cost of raw materials in manufacturing a product
- the maximum height a football could reach when kicked
- These are called optimisation problems

What modelling assumptions are used in optimisation problems?

- The quantity being optimised needs to be dependent on a single variable
- If othervariables are initially involved, constraints or assumptions about them will need to be made;forexample
- minimis ing the cost of the main raw material - timber in manufacturing furniture say- the cost of screws, glue, varnish, etc can be fixed orconsidered negligible
- Othermodelling assumptions may have to be made too; for example
- ignoring air resistance and wind when modelling the path of a kicked football

How do Isolve optimisation problems?

- In optimisation problems, letters other than X, y and f are often used including capital letters
- V is often used for volume, S for surface area
- r for radius if a circle, cylinderorsphere is involved
- Derivatives canstill be found but be clear about which variable is independent ($\boldsymbol{X})$ and which is dependent (y)
- a GDC may always use X and \boldsymbol{Y} but ensure you use the correct variable throughout your working and final answer
- Problems often start by linking two connected quantities to gether - forexample volume and surface area
- where more than one variable is involved, constraints will be given such that the quantity of interest can be rewritten in terms of a single variable
- Once the quantity of interest is written as a function of a single variable, differentiation can be used to maximise or minimise the quantity as required

STEP 1

E目
 Exam Papers Practice

Rewrite the quantity to be optimised as a single variable, using any constraints given in the question

STEP 2

Use your GDC to find the (local) maximum or minimum points as required Plot the graph of the function and use the graphing features of the GDC to "solve for minimum/maximum" as required

STEP 3

Note down the solution from your GDC and interpret the answer(s) in the context of the question

(-) Exam Tip

- The first part of rewriting a quantity as a single variable is often a "show that" question - this means you maystill be able to access later parts of the question even if you can't do this bit

Worked example

A large allo tment bed is being designed as a rectangle with a semicircle on each end, as shownin the diagram below.

The total area of the bed is to be $100 \pi \mathrm{~m}^{2}$
a) Show that the perimeter of the bed is given by the formula

$$
P=\pi\left(r+\frac{100}{r}\right)
$$

The width of the rectangle is $2 r \mathrm{~m}$ and its length Lm The AREA of the bed, $100 \pi \mathrm{~m}^{2}$ is given by

$$
\begin{aligned}
& \frac{1}{2} \pi r^{2}+2 r L+\frac{1}{2} \pi r^{2}=100 \pi \\
& \uparrow \quad \uparrow \quad \kappa \quad \text { total area } \\
& \text { semi-circle rectangle semi-circle (this is the constraint) }
\end{aligned}
$$

$$
\begin{aligned}
\therefore & \pi r^{2}+2 r L=100 \pi \\
& 2 r L=100 \pi-\pi r^{2} \\
& L=\frac{50 \pi}{r}-\frac{\pi}{2} r
\end{aligned} \quad \text { Wite } L \text { in terms of } r
$$

The PERIMETER of the bed is

$$
P=\pi r+\pi r+2 L
$$

$\gamma \rho$ - two straight
semi-circular ares
Use L from the area constraint to write P in terms of roily
Exa

$$
P=2 \pi r+2\left(\frac{50 \pi}{r}-\frac{\pi}{2} r\right)
$$

$$
P=\pi r+\frac{100 \pi}{r}
$$

$$
\therefore P=\pi\left(r+\frac{100}{r}\right)
$$

b) Find $\frac{\mathrm{d} P}{\mathrm{~d} r}$.

Rewrite P os powers of r

$$
\begin{aligned}
& P=\pi\left(r+100 r^{-1}\right) \\
& \frac{d P}{d r}=\pi\left(1-100 r^{-2}\right)
\end{aligned}
$$

$$
\therefore \frac{d P}{d r}=\pi\left(1-\frac{100}{r^{2}}\right)
$$

c) Find the value of r that minimises the perimeter.

$$
\text { Use GDC to plot } y=\pi\left(x+\frac{100}{x}\right) \text { and }
$$

sketch the result

\therefore The value of r that minimises the perimeter is $r=10$

d) Hence find the minimum perimeter.

Exam Papers Practice

The minimum perimeter will be the y-coordinate of the local minimum point found in part (c) From GDC, $y=62.831853 \ldots \quad($ when $x=10$)
\therefore Minimum perimeter is
$\quad 62.8 \mathrm{~m}(3 \mathrm{s.f}$.

ExamPapers Practice
Copyright
© 2024 Exam Papers Practice

