

Boost your performance and confidence with these topic-based exam questions

Practice questions created by actual examiners and assessment experts

Detailed mark scheme

Suitable for all boards

Designed to test your ability and thoroughly prepare you

5.1 Differentiation

IB Maths - Revision Notes

AA SL

5.1.1 Introduction to Differentiation

Introduction to Derivatives

Before introducing a derivative, an understanding of a limit is helpful

What is a limit?

- The **limit** of a **function** is the value a function (of *X*) approaches as *X* approaches a particular value from either side
 - Limits are of interest when the function is undefined at a particular value
 - For example, the function $f(x) = \frac{x^4 1}{x 1}$ will approach a limit as X approaches 1 from both

below and above but is undefined at x = 1 as this would involve dividing by zero

What might I be asked about limits?

- You may be asked to predict or estimate limits from a table of function values or from the graph of v = f(x)
- You may be asked to use your GDC to plot the graph and use values from it to estimate a limit

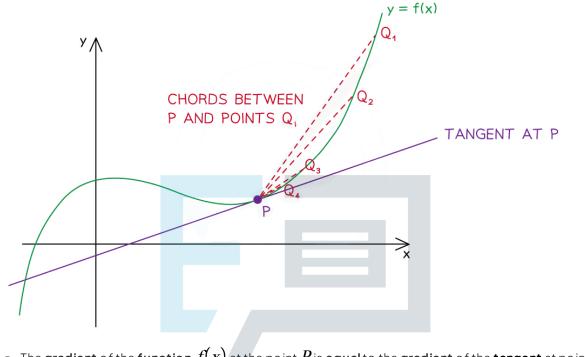
What is a derivative?

- Calculus is about rates of change
 - the way a car's position on a road changes is its speed (velocity)
 - the way the car's speed changes is its acceleration
- The gradient (rate of change) of a (non-linear) function varies with X
- Copy The derivative of a function is a function that relates the gradient to the value of X

© 20.74 The derivative is also called the gradient function

How are limits and derivatives linked?

- Consider the point P on the graph of y = f(x) as shown below
 - [PQ;] is a series of chords



- The gradient of the function f(x) at the point P is equal to the gradient of the tangent at point P
- The gradient of the tangent at point P is the limit of the gradient of the chords $[PQ_i]$ as point

Q 'slides' down the curve and gets ever closer to point P

Copyright The gradient of the function changes as X changes

 \odot 2024 EThe derivative is the function that calculates the gradient from the value X

What is the notation for derivatives?

• For the function y = f(x), the **derivative**, with respect to X, would be written as

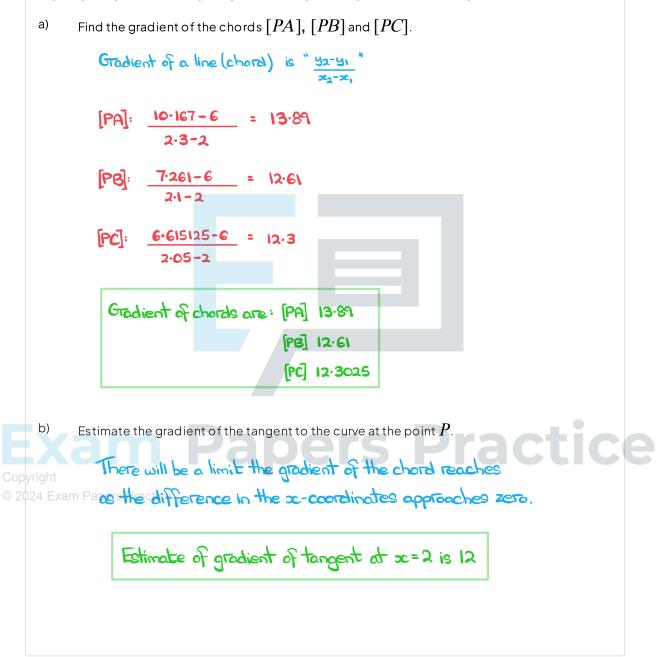
$$\frac{\mathrm{d}y}{\mathrm{d}x} = f'(x)$$

Different variables may be used

• e.g. If
$$V = f(s)$$
 then $\frac{\mathrm{d}V}{\mathrm{d}s} = f'(s)$

Worked example

The graph of y = f(x) where $f(x) = x^3 - 2$ passes through the points P(2, 6), A(2.3, 10.167), B(2.1, 7.261) and C(2.05, 6.615125).



Differentiating Powers of x

What is differentiation?

• **Differentiation** is the process of finding an expression of the **derivative** (gradient function) from the expression of a function

How do I differentiate powers of x?

• **Powers** of *X* are **differentiated** according to the following formula:

• If
$$f(x) = x^n$$
 then $f'(x) = nx^{n-1}$ where $n \in \mathbb{Q}$

- This is given in the **formula booklet**
- If the power of X is multiplied by a constant then the derivative is also multiplied by that constant

ers Practice

• If
$$f(x) = ax^n$$
 then $f'(x) = anx^{n-1}$ where $n \in \mathbb{Q}$ and a is a constant

• The alternative notation (to f'(x)) is to use $\frac{dy}{dx}$

• If
$$y = ax^n$$
 then $\frac{dy}{dx} = anx^{n-1}$

• e.g. If
$$y = -4x^{\frac{1}{2}}$$
 then $\frac{dy}{dx} = -4 \times \frac{1}{2} \times x^{\frac{1}{2}} = -2x^{-\frac{1}{2}}$

Don't forget these **two** special cases:

• If
$$f(x) = ax$$
 then $f'(x) = a$

e.g. If y = 6x then $\frac{dy}{dx} = 6$ or f(x) = a then f'(x) = 0Copyright 0 2024 Example 2. If y = 5 then $\frac{dy}{dx} = 0$

- These allow you to differentiate linear terms in X and constants
- Functions involving **roots** will need to be rewritten as **fractional powers** of **X** first

e.g. If
$$f(x) = 2\sqrt{x}$$
 then rewrite as $f(x) = 2x^{\frac{1}{2}}$ and differentiate

 Functions involving fractions with denominators in terms of X will need to be rewritten as negative powers of X first

• e.g. If
$$f(x) = \frac{4}{x}$$
 then rewrite as $f(x) = 4x^{-1}$ and differentiate

How doldifferentiate sums and differences of powers of x?

• The formulae for differentiating powers of *X* apply to **all rational** powers so it is possible to differentiate any expression that is a **sum** or **difference** of **powers** of *X*

• e.g. If
$$f(x) = 5x^4 - 3x^{\frac{2}{3}} + 4$$
 then
 $f'(x) = 5 \times 4x^{4-1} - 3 \times \frac{2}{3}x^{\frac{2}{3}-1} + 0$
 $f'(x) = 20x^3 - 2x^{-\frac{1}{3}}$

- Products and quotients cannot be differentiated in this wayso would need expanding/simplifying first
 - e.g. If $f(x) = (2x-3)(x^2-4)$ then expand to $f(x) = 2x^3 3x^2 8x + 12$ which is a sum/difference of powers of X and can be differentiated

💽 Exam Tip

- A common mistake is not simplifying expressions before differentiating
 - The derivative of $(x^2 + 3)(x^3 2x + 1)$ can **not** be found by multiplying the derivatives of $(x^2 + 3)$ and $(x^3 2x + 1)$

Worked example
The function
$$f(x)$$
 is given by
Copyright
© 2024 Exam Papers Practice
Find the derivative of $f(x)$
Rewrite $f(x)$ so every term is a power of ∞
 $f(x) = 2x^3 + \frac{4}{\sqrt{x}}$, where $x > 0$
Copyright
Differentiate by applying the formula
 $f(x) = 6x^2 - 2x^{-3/2}$
take care with negatives
 $-\frac{1}{x} - 1 = -\frac{3}{2}$
 $\therefore f'(x) = 6x^2 - 2x^{-3/2}$

5.1.2 Applications of Differentiation

Finding Gradients

How do I find the gradient of a curve at a point?

- The gradient of a curve at a point is the gradient of the tangent to the curve at that point
- Find the gradient of a curve at a point by substituting the value of X at that point into the curve's derivative function
- For example, if $f(x) = x^2 + 3x 4$
 - then f'(x) = 2x + 3
 - and the gradient of y = f(x) when x = 1 is f'(1) = 2(1) + 3 = 5
 - and the gradient of y = f(x) when x = -2 is f'(-2) = 2(-2) + 3 = -1
- Although your GDC won't find a derivative function for you, it is possible to use your GDC to

evaluate the derivative of a function at a point, using $\frac{d}{dx}(\Box)_{x=\Box}$

Worked example

A function is defined by $f(x) = x^3 + 6x^2 + 5x - 12$.

(a) Find f'(x).

Find f'(x) by differentiating

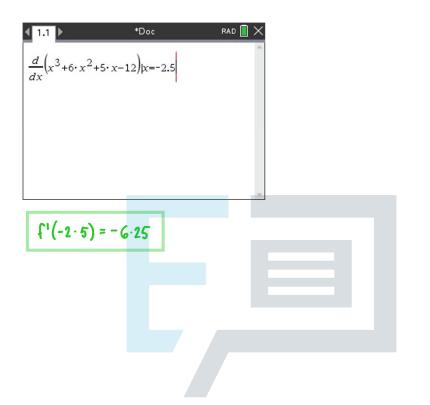
f'(x) = 3x² + 2×6x' + 5x° Papers Practice $f'(x) = 3x^2 + 12x$

(b) Hence show that the gradient of y = f(x) when x = 1 is 20.

Substitute
$$x = 1$$
 into $f'(x)$
 $f'(1) = 3(1)^2 + 12(1) + 5$
 $= 3 + 12 + 5$
 $f'(1) = 20$

(c) Find the gradient of y = f(x) when x = -2.5.

Use the GDC to evaluate the derivative of f(x) at x = -2.5



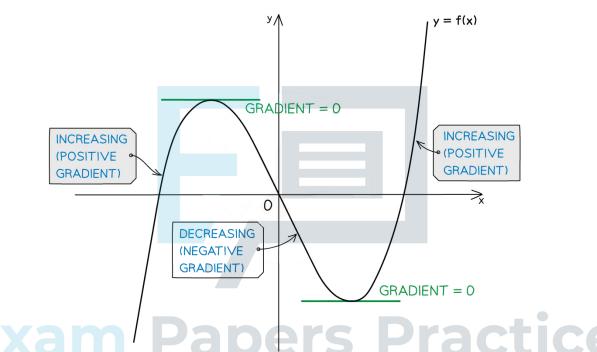
Exam Papers Practice

© 2024 Exam Papers Practice

Increasing & Decreasing Functions

What are increasing and decreasing functions?

- A function, f(x), is increasing if f'(x) > 0
 - This means the value of the function ('output') increases as X increases
- A function, f(x), is decreasing if f'(x) < 0
 - This means the value of the function ('output') decreases as X increases
- A function, f(x), is stationary if f'(x) = 0



How do I find where functions are increasing, decreasing or stationary?

© 2024 To identify the intervals on which a function is increasing or decreasing

STEP 1

Find the derivative **f'**(*x*)

STEP 2

Solve the inequalities

f'(x) > 0 (for increasing intervals) and/or

f'(x) < 0 (for decreasing intervals)

- Most functions are a combination of increasing, decreasing and stationary
 - a range of values of X (interval) is given where a function satisfies each condition
 - e.g. The function $f(x) = x^2$ has derivative f'(x) = 2x so
 - f(x) is decreasing for x < 0
 - f(x) is stationary at x = 0
 - f(x) is increasing for x > 0

$$f(x) = x^2 - x - 2$$

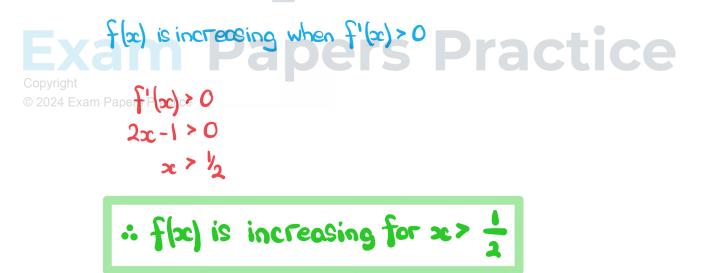
a) Determine whether f(x) is increasing or decreasing at the points where x = 0 and x = 3.

Differentiate

$$f'(x) = 2x - 1$$

At $x = 0$, $f'(0) = 2x0 - 1 = -1 < 0$: decreasing
At $x = 3$, $f'(3) = 2x3 - 1 = 5 > 0$: increasing
 \therefore At $x = 0$, $f(x)$ is decreasing
At $x = 3$, $f(x)$ is increasing

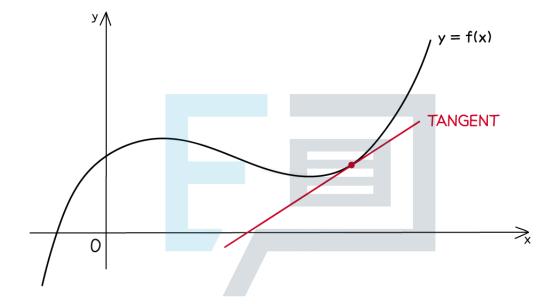
b) Find the values of X for which f(x) is an increasing function.



Tangents & Normals

What is a tangent?

- At any point on the graph of a (non-linear) **function**, the **tangent** is the straight line that **touches** the graph at a point **without crossing** through it
- Its gradient is given by the derivative function



How do I find the equation of a tangent?

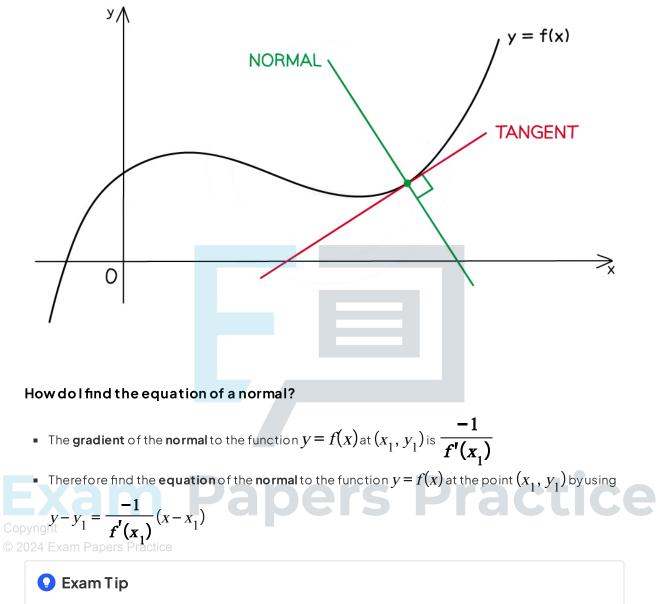
- To find the equation of a straight line, a point and the gradient are needed
- The gradient, m, of the tangent to the function y = f(x) at (x_1, y_1) is $f'(x_1)$
 - Therefore find the equation of the tangent to the function y = f(x) at the point (x_1, y_1) by
 - substituting the gradient, $f'(x_1)$, and point (x_1, y_1) into $y y_1 = m(x x_1)$, giving:

•
$$y - y_1 = f'(x_1)(x - x_1)$$

• (You could also substitute into y = mx + c but it is usually quicker to substitute into $y - y_1 = m(x - x_1)$)

What is a normal?

• At any point on the graph of a (non-linear) function, the **normal** is the straight line that passes through that point and is **perpendicular** to the **tangent**



- You are not given the formula for the equation of a tangent or the equation of a normal
- But both can be derived from the equations of a straight line which are given in the formula booklet

Worked example

The function f(x) is defined by

$$f(x) = 2x^4 + \frac{3}{x^2}$$
 $x \neq 0$

a) Find an equation for the tangent to the curve y = f(x) at the point where x = 1, giving your answer in the form y = mx + c.

First find f'(x) by differentiating $f(x) = 2x^{14} + 3x^{-2}$ Rewrite as powers of x $f'(x) = 8x^3 - 6x^{-3}$ For a tangent, "y-y_1 = $f(a)(x-2c_1)$ " At x = 1, $y = 2(1)^{14} + \frac{3}{(1)^2} = 5$ $f'(1) = 8(1)^3 - \frac{6}{(1)^3} = 2$ $\therefore y - 5 = 2(x-1)$

Tangent at x=1, is y= 2x+3

Copyright

b) Find an equation for the normal at the point where x = 1, giving your answer in the form ax + by + d = 0, where a, b and d are integers.

For a normal, "y-y1 =
$$\frac{-1}{f'(a)}(x-x_1)$$
"
Using results from part (c):
 $y-5 = \frac{-1}{2}(x-1)$
 $y = -\frac{1}{2}x + \frac{11}{2}$
 $2y = -x + 11$
"Equation of normal is $x + 2y - 11 = 0$