

Current-Voltage Characteristics TOPIC QUESTIONS

- 1. The resistance of a metallic conductor increases with temperature because, at highertemperatures,
 - A more electrons become available for conduction
 - B the conductor becomes a superconductor
 - C the amplitude of vibration of lattice ions increases
 - D the length and cross-sectional area of the conductor both increase
- 2. A 1.5 m length of wire has a cross-sectional area 5.0 × 10⁻⁸ m ². When the potential difference across its ends is 0.20 V, it carries a current of 0.40 A. The resistivity of the material from which the wire is made is
 - **A** $6.0 \times 10^{7} \Omega m$
 - **B** 1.7 × 10⁻8 Ω m
 - **C** 1.1 × 10⁶ Ω m
 - **D** $9.4 \times 10^{-7} \Omega m$

3. The circuit in **Figure 1** is used to investigate how the potential difference *V* between the terminals of a cell varies as the current / in the circuit changes. **Figure 2** shows the graph of the results.

Which one of the following can be deduced from the gradient of the graph?

RS PRACTICE

- A The internal resistance of the cell
- **B** The e.m.f. of the cell
- C The power dissipated by the cell
- D The resistance of the variable resistor

4. Three identical resistors X, Y and Z are connected across a battery as shown.

5. The 12 V battery in the circuit shown has negligible internal resistance. The diodes have 'ideal' characteristics.

0.40 A D

A 0 A

В

С

6. The capacity of a portable charger is rated in ampere hours (A h). A charger of capacity 1 A hcan provide 1 A for 1 hour at its working voltage.

-One charger has a capacity of 1800 mA h at a working voltage of 3.7 V.

What is the energy stored in this charger?

- Α 6.5 kJ
- В 24 kJ
- С 400 kJ
- D 24 kJ

	Α	26 C
7. A filament lamp with resistance 12Ω is operated at a power of 36 W.	в	1.6 kC
How much charge flows through the filament lamp during 15 minutes?	С	2.7 Kc

For more help, please visit www.exampaperspractice.co.uk

С

D 6.5 kC

EXAM PAPERS PRACTICE

For more help, please visit <u>www.exampaperspractice.co.uk</u>

8. The diagram shows a temperature-sensing circuit.

The temperature of the thermistor is decreased.

Which row shows the changes to the ammeter reading and the voltmeter reading?

	Ammeter reading	Voltmeter reading
A	increases	increases
в	increases	decreases
С	decreases	decreases
D	decreases	increases

9. The potential difference between points **X** and **Y** is *V*.

10. A resistor with resistance R is made from metal wire of resistivity ρ . The length of the wire is L. What is the diameter of the wire?

12. What is the correct equation linking current, charge and time?

- A. Q = It
- B. Q = EV

D. Q = IV

13. What happens when two oppositely charged conductors are connected together by a length of wire?

- A. Charge will jump between the two conductors
- B. Charge builds up on the surface of one of the conductors
- C. Charge cannot flow between the two conductors
- D. Charge will flow between the two conductors, causing a current

For more help, please visit www.exampaperspractice.co.uk

14. Which statement is true about the now of electrons and conventional current in an electric circuit?

	Flow of Electrons	Conventional Current	
A	In electrical wires the current is a flow of electrons	Conventional current is defined as the flow of negative charge	
В	Electrons flow away from the negative to thepositive terminal of a cell	Conventional current flows in the same direction as electron flow	
с	Electrons are positively charged	Conventional current is defined as the flow of positive charge	
D	Electrons flow away from the negative to the positive terminal of a cell	Conventional current flows in the opposite direction to electron current flow	

15. What is the equation linking potential difference, work done and charge?

A. V = QWB. Q = EVC. $V = \frac{W}{Q}$ E D. $P = \frac{W}{T}$

EXAM PAPERS PRACTICE

16. What are the correct units for current, resistance and potential dimerence?

	Current (I)	Resistance (<i>R</i>)	Potential Difference (V)
Α	Amperes	Ohms	Volts
В	Coulombs	Joules	Amperes
С	Meters per second	Coulombs	Joules
D	Joules	Resistivity	Coulombs

17. What is the correct equation for Ohm's Law?

A. V = IR B. Q = It C. V = $\frac{W}{Q}$ E D. P = $\frac{T}{T}$

18. What is the definition of Ohm's Law?

- A. The current through a conductor in a circuit is proportional to the potential difference across it
- B. For a conductor at a constant temperature, the current through it is proportional to the potential difference across it
- C. The resistance of a conductor is constant whilst the temperature remains constant
- D. An increase in temperature of an Ohmic conductor will create an increase in current across the component

19. Which graph represents the current-voltage characteristic of an ohmic conductor?

EXAM PAPERS PRACTICE

For more help, please visit www.exampaperspractice.co.uk

20. A diode allows current in a circuit to now in only one specific direction.

Which statements correctly describe the current-potential difference graph for a semiconductor diode?

	Statement 1	Statement 2		
A	When the current flows in the direction o the diode, there is a sharp increase in potential difference and current on the right side of thegraph	When the diode is reversed, it conducts electricity andthis is shown by a sharp increase in potential difference and current on the right side of the graph		
В	When the current flows in the direction of t diode, then it does not conduct and this is shownby a zero on the right hand side of th graph	shown by a zero on the left handside of the graph		
С	When the current flows in the direction o the diode, there is a sharp increase in potential difference and current on the right side of thegraph	When the diode is reversed, it does not conduct electricity and this is shown by a zero on the left handside of the graph		
D	When the current flows in the direction of t diode, then it does not conduct and this is shownby a zero on the right hand side of th graph	shown by a zero on the left handside of the graph		