Please check the examination details belo	w before ente	ering your candidate information
Candidate surname		Other names
Pearson Edexcel Intern		nal GCSE
Tuesday 29th Octob	er 202	24
Morning (Time: 2 hours)	Paper reference	4PM1/01
Further Pure Math	nema	ntics
Calculators may be used.		Total Marks

Instructions

- Use **black** ink or ball-point pen.
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer **all** questions.
- Without sufficient working, correct answers may be awarded no marks.
- Answer the questions in the spaces provided
 - there may be more space than you need.
- You must NOT write anything on the formulae page.
 Anything you write on the formulae page will gain NO credit.

Information

- The total mark for this paper is 100.
- The marks for **each** question are shown in brackets
 - use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Check your answers if you have time at the end.

Turn over ▶

International GCSE in Further Pure Mathematics Formulae sheet

Mensuration

Surface area of sphere = $4\pi r^2$

Curved surface area of cone = $\pi r \times \text{slant height}$

Volume of sphere = $\frac{4}{3}\pi r^3$

Series

Arithmetic series

Sum to *n* terms, $S_n = \frac{n}{2} [2a + (n-1)d]$

Geometric series

Sum to *n* terms,
$$S_n = \frac{a(1-r^n)}{(1-r)}$$

Sum to infinity,
$$S_{\infty} = \frac{a}{1-r} |r| < 1$$

Binomial series

$$(1+x)^n = 1 + nx + \frac{n(n-1)}{2!}x^2 + \dots + \frac{n(n-1)\dots(n-r+1)}{r!}x^r + \dots$$
 for $|x| < 1, n \in \mathbb{Q}$

Calculus

Quotient rule (differentiation)

$$\frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{\mathrm{f}(x)}{\mathrm{g}(x)} \right) = \frac{\mathrm{f}'(x)\mathrm{g}(x) - \mathrm{f}(x)\mathrm{g}'(x)}{\left[\mathrm{g}(x)\right]^2}$$

Trigonometry

Cosine rule

In triangle ABC: $a^2 = b^2 + c^2 - 2bc \cos A$

$$\tan \theta = \frac{\sin \theta}{\cos \theta}$$

$$\sin(A+B) = \sin A \cos B + \cos A \sin B$$

$$\sin(A - B) = \sin A \cos B - \cos A \sin B$$

$$\cos(A+B) = \cos A \cos B - \sin A \sin B$$

$$\cos(A - B) = \cos A \cos B + \sin A \sin B$$

$$\tan(A+B) = \frac{\tan A + \tan B}{1 - \tan A \tan B}$$

$$\tan(A - B) = \frac{\tan A - \tan B}{1 + \tan A \tan B}$$

Logarithms

$$\log_a x = \frac{\log_b x}{\log_b a}$$

BLANK PAGE

Answer all TEN questions.

Write your answers in the spaces provided.

You must write down all the stages in your working.

(a) On the grid below, draw the line with equation

(i)
$$3x + 4y = 24$$

(ii)
$$2x - 5y + 10 = 0$$

(2)

(b) Show, by shading on the grid, the region R defined by the inequalities

$$3x + 4y \leq 24$$

$$3x+4y \leqslant 24$$
 $2x-5y+10 \geqslant 0$ $y \leqslant 5$ $x \geqslant -1$

$$y \leqslant 5$$

$$x \geqslant -1$$

Label the region R

(2)

2	The sum of the fifth, sixth and seventh terms of an arithmetic series A is nine times the sum of the first and second terms. The third term of A is 12	
	(a) Find the first term and common difference of A	(5)
	The <i>n</i> th term of <i>A</i> is u_n	
	(b) Find the value of $\sum_{r=15}^{60} u_r$	(4)
	The sum to n terms of A is S_n	
	Given that $2S_n - 5u_n = 10$	
	(c) find the value of <i>n</i>	(4)
		(-)

3	Triangle ABC is s	such that			
		$AC = 10 \mathrm{cm}$	BC = 7cm	angle $CAB = 25^{\circ}$	
	Given that angle A	ABC is obtuse,			
	find, in cm to one		e length of AB		
	,	1	C		(5)

(6)

Diagram **NOT** accurately drawn

Figure 1

Figure 1 shows a right prism *ABCDEF* Triangle *CDE* is a cross section of the prism.

- $\angle DCE = \angle ABF = 90^{\circ}$
- $\angle EDC = \angle FAB = 40^{\circ}$
- DE = AF = 15 cm
- EF = DA = CB = 20 cm

Find, in degrees to one decimal place, the size of the angle between the line FD and the plane DCBA

5	A particle <i>P</i> is moving along a straight line.	
	At time t seconds $(t \ge 0)$, the velocity, v m/s, of P is given by	
	$v = 3t^2 - 16t + 5$	
	(a) Find the values of t when P is instantaneously at rest.	(2)
	At time 4 are and 4 the constant in a f D is $m = 1/2$	(3)
	At time t seconds the acceleration of P is a m/s ²	
	(b) Find the range of values of t for which $a > 0$	(2)
	(c) Find the distance, in m, that P travels in the interval $1 \leqslant t \leqslant 4$	
		(5)

6 (a) Show that

$$\frac{a}{\sqrt{4+bx}} = \frac{a}{2} \left(1 + \frac{bx}{4}\right)^{-\frac{1}{2}}$$
 where a and b are positive integers.

The expansion of $\frac{a}{\sqrt{4+bx}}$ in ascending powers of x can be written as

$$P + Qx + Rx^2 + Sx^3$$

where P, Q, R and S are rational numbers.

(b) Show that $Q = -\frac{ab}{16}$ and $S = -\frac{5ab^3}{2048}$

and find P and R in terms of a and b, as fractions in their lowest terms.

(4)

(2)

Given that $Q = \frac{128}{5}S$ and $R = \frac{9}{256}$

(c) show that a = 3 and b = 1

(3)

(d) Hence, using an appropriate value of x, find, to 3 decimal places, an approximate value for $\frac{\sqrt{6}}{2}$

(3)

Question 6 continued

Figure 2

Figure 2 shows a shape ABCDEOFG

ABCO is a quarter circle with radius r cm CDEO and AOFG are congruent rectangles of length r cm and width x cm

The total area of the shape is $100 \,\mathrm{cm}^2$ The perimeter of the shape is $P \,\mathrm{cm}$

(a) Show that
$$P = \frac{200}{r} + 2r$$

(b) Use calculus to find the value of r for which P is a minimum, justifying that this value of r gives a minimum value of P

(5)

(4)

(c) Find the minimum value of P

(2)

Question 7 continued	
	•••
	•••

8 (i) (a) Using a formula given on page 2, show that

$$\tan 2A = \frac{2\tan A}{1 - \tan^2 A} \tag{2}$$

(b) Hence, solve the equation

$$\tan A^{\circ} - \tan 2A^{\circ} = 0 \qquad \qquad \text{for } 0 \leqslant A \leqslant 180$$

(5)

(ii) Using a formula given on page 2, solve, giving your solutions as exact values

$$\cos\left(x - \frac{\pi}{6}\right) = \sin x \qquad \text{for } -\pi \leqslant x \leqslant 2\pi$$
(4)

Question 8 continued

Diagram **NOT** accurately drawn

Figure 3

Figure 3 shows part of the curve C with equation $y^2 = x - 1$ and part of the line l with equation 2y + x - 4 = 0

The region R, bounded by the x-axis, the curve C and the line l, is rotated through 360° about the x-axis.

Using algebraic integration, find the exact value of the volume of the solid generated.

(10)

$\times\!\!\times\!\!\times$	XX
$\sim\sim$	$\times\!\!\times$
DO N	$\times\!\!\times$
	$\times \times$
\sim	\times
	XX
$^{\circ}$	XX.
	XX.
	XX.
	$\times\!\!\times$
	$\times \times$
OT W	$\times \times$
	$\times\!\!\times$
	$\times \times$
	$\times \times$
	ixx.
	ixx.
XXX	
$\times \times U$	\times
70	
$\times \times \times$	\otimes
\times	\otimes
\times	\otimes
\times EU	\otimes
$\times \times \times$	\sim
$\times \times \times$	\sim
	\sim
\times	$\Diamond \Diamond$
$\times \times \times i$	\bowtie
\times	\otimes
THIN THIS	$\Diamond \Diamond$
$\times \times \cap$	\otimes
XXX	
XXX	\otimes
$\times $	$\otimes \otimes$
$\times\!\!\!\times\!\!\!\times\!\!\!\times$	$\Diamond \Diamond$
X	
\times	
XXX	KX.
\times	
ARE	KÓ.
	KX.
	KX.
XX	
XXX.	~~
XXX.	~~
XXX.	~~
	~~
XXX.	~~
XXX.	~~
XXX.	88.
$\times\!\!\times\!\!\times$	XX.
$\times\!\!\times\!\!\times$	XX.
$\times\!\!\times\!\!\times$	XX.
	XX
$\times\!\!\times\!\!\times$	
>>>	$\times\!\!\times$
>>>	\otimes
	\otimes
	\otimes
	$\overset{\times}{\otimes}$
D	
Q	
DC	
DO	
DO	
DON	
DON	
DONC	
DONO	
FON OC	
TONOT	
DONOTA	
M LON OG	
DO NOT W	
DONOTWE	
DO NOT WR	
DO NOT WRI	
DO NOT WRIT	
DO NOT WRITE	
DO NOT WRITE	
DO NOT WRITE	
RITE IN THIS	
RITE IN THIS ARE	
RITE IN THIS ARE	
RITE IN THIS ARE	
RITE IN THIS	
RITE IN THIS ARE	

					Ş		
			ú				
				ģ			
	2		þ	۹	7	ŧ	
S	2	S	ξ	3	₹	3	
>	S	>	Š	2	Į	9	
>	8	8	ξ			j	֡
>	S	8	Š			į	
	8	3	S	d			֡
	3	3	S				֡
	5	3	S			(
>	3	3	S			(
>	3	3	S			(
>	3	3	S			(
>	3	3	S			(
		3	S			(
	3	3				(
		3					
>	3	>					
>	\ \ \	3					
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>							
>							
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>							

2					Ν
>					
		Ί	P	b	뼥
2		d	ĸ		2
⟨	ς	2	۹	Ħ	ø,
			á	è	16
2		d	r		7
		Л	ь	ú	ы
			7	7	7
>		C	2	S	\geq
⋖)	۹	7	
2		à	d		S
		e	7	۳	7
	۲,	2	ä	μ	ь
ć		Ί	r		a
		◁	٠	6	a
⋖	۱			7	7
		١	¥	ц	뼥
2					Х
1	١.				١.
		١	á	è	ø
2		C	9	٠	w
	١,	d		٤	5
			7	۹	×
2		q	ù	6	è
			Z		Ø
		'n	۳	7	e
		q	ù	6	è
	8				1
0		ì	ВÍ	è	эd
2					X
	\	á	è	ú	è
ć		3	г	1	П
2					
	S		S		S
>	>	Ś	S	2	è
⋖	8			2	Š
	3	9	5	2	
⋖	2				
ξ	3	9			
ζ	3	S		2	
ξ	3	9			
ξ	3		3		
3	3	S	3		
ξ	\ \ \				
3	\ \ \				
\ \ \ \					
3					

Question 9 continued	

10
$$f(x) = 3 - 4x - 9x^2$$

Given that f(x) can be expressed in the form $A - B(x + C)^2$ where A, B and C are positive constants

(a) find the value of A, the value of B and the value of C

(4)

(b) Hence write down the maximum value of f(x)

(1)

The equation f(x) = 0 has roots α and β

Without solving the equation f(x) = 0

- (c) form a quadratic equation, with integer coefficients, that has roots $\frac{3\alpha}{\beta}$ and $\frac{3\beta}{\alpha}$
- (d) Show that $(x+y)^3 = x^3 + y^3 + 3xy(x+y)$

(1)

$$g(x) = 3x^2 + qx + r$$
 where q and r are constants

The equation g(x) = 0 has roots $\alpha^2 - \beta$ and $\beta^2 - \alpha$ where α and β are the roots of the equation f(x) = 0

(e) Using your answer to part (d), find in simplified exact form, the value of q and the value of r

(6)

Question 10 continued	
	(Total for Question 10 is 18 marks)

TOTAL FOR PAPER IS 100 MARKS

