Please check the examination details belo	w before ente	ering your candidate information
Candidate surname		Other names
Pearson Edexcel Intern		al GCSE
Friday 15th Novemb	er 20	24
Morning (Time: 2 hours)	Paper reference	4PM1/02
Further Pure Math	nema	tics
Calculators may be used.		Total Marks

Instructions

- Use **black** ink or ball-point pen.
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer **all** questions.
- Without sufficient working, correct answers may be awarded no marks.
- Answer the questions in the spaces provided
 - there may be more space than you need.
- You must NOT write anything on the formulae page.
 Anything you write on the formulae page will gain NO credit.

Information

- The total mark for this paper is 100.
- The marks for each question are shown in brackets
 - use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Check your answers if you have time at the end.

Turn over

International GCSE in Further Pure Mathematics Formulae sheet

Mensuration

Surface area of sphere = $4\pi r^2$

Curved surface area of cone = $\pi r \times \text{slant height}$

Volume of sphere = $\frac{4}{3}\pi r^3$

Series

Arithmetic series

Sum to *n* terms, $S_n = \frac{n}{2} [2a + (n-1)d]$

Geometric series

Sum to *n* terms,
$$S_n = \frac{a(1-r^n)}{(1-r)}$$

Sum to infinity, $S_{\infty} = \frac{a}{1-r} |r| < 1$

Binomial series

$$(1+x)^n = 1 + nx + \frac{n(n-1)}{2!}x^2 + \dots + \frac{n(n-1)\dots(n-r+1)}{r!}x^r + \dots$$
 for $|x| < 1, n \in \mathbb{Q}$

Calculus

Quotient rule (differentiation)

$$\frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{\mathrm{f}(x)}{\mathrm{g}(x)} \right) = \frac{\mathrm{f}'(x)\mathrm{g}(x) - \mathrm{f}(x)\mathrm{g}'(x)}{\left[\mathrm{g}(x)\right]^2}$$

Trigonometry

Cosine rule

In triangle ABC: $a^2 = b^2 + c^2 - 2bc \cos A$

$$\tan \theta = \frac{\sin \theta}{\cos \theta}$$

$$\sin(A+B) = \sin A \cos B + \cos A \sin B$$

$$\sin(A - B) = \sin A \cos B - \cos A \sin B$$

$$\cos(A+B) = \cos A \cos B - \sin A \sin B$$

$$\cos(A - B) = \cos A \cos B + \sin A \sin B$$

$$\tan(A+B) = \frac{\tan A + \tan B}{1 - \tan A \tan B}$$

$$\tan(A - B) = \frac{\tan A - \tan B}{1 + \tan A \tan B}$$

Logarithms

$$\log_a x = \frac{\log_b x}{\log_b a}$$

Answer all TEN questions.

Write your answers in the spaces provided.

You must write down all the stages in your working.

1

Diagram **NOT** accurately drawn

Figure 1

Figure 1 shows sector ROS of a circle with centre O and radius 2 cm. The size of angle ROS is θ radians.

The area of sector *ROS* is $\frac{\pi}{2}$ cm²

(a) Find the exact value of θ

(2)

The perimeter of sector ROS is P cm

(b) Find the exact value of P

(3)

(Total	for	Question	1	is	5	marks

2	The length of rectangle R is 2 cm greater than its width.	
	The area of R is greater than 8 cm^2 and the perimeter of R is less than 30 cm .	
	Given that the width of R is w cm,	
	find the set of possible values of w	
	Give your answer in the form $a < w < b$ where a and b are rational numbers.	(6)

3	The curve C has equation $y = e^{3x} (2x-1)^4$			
	Using calculus, find the exact value of the gradient of the tangent to C when $x = 1$			
		(5)		

4 (a) Complete the table of values for $y = \log_{10}(6x-1) - x$ giving your answers to 2 decimal places.

x	0.25	0.5	1	1.5	2	2.5	3
y		-0.20	-0.30	-0.60			

(2)

(b) On the grid opposite, draw the graph of
$$y = \log_{10}(6x-1) - x$$
 for $0.25 \le x \le 3$

(2)

(c) By drawing a suitable straight line on the grid, obtain an estimate, to one decimal place, of the root of the equation

$$10^{\frac{3x-4}{2}} = 6x-1$$
 in the interval $0.25 \leqslant x \leqslant 3$

(4)

Question 4 continued

Turn over for a spare grid if you need to redraw your graph.

Question 4 continued	

Question 4 continued

Only use this grid if you need to redraw your graph.

(Total for Question 4 is 8 marks)

5	5 The height of liquid in a vessel P is h The volume, V , of the liquid in P is given by $V = 6h^3$ Liquid is leaking from P at a constant rate of $36 \mathrm{cm}^3/\mathrm{s}$		
	Find the exact rate of change, in cm/s, of h when $V = 384 \text{ cm}^3$		
		(5)	

6	(i)	Solve the equation $5(\log_b 9 + \log_b 3) = 3$	(4)
	(ii)	Solve the equation $3\log_3 x + 3\log_x 27 = 8\log_4 128$ Give your answers in exact form.	
			(7)

7 (a) Use the factor theorem to show that (4x-1) is a factor of

$$f(x) = 64x^3 - 64x^2 + 3$$

(2)

(b) Hence, or otherwise, find the exact roots of the equation

$$f(x) = 0$$

(4)

A geometric series G has first term a and common ratio r. The third term of G is 9 and the sum to infinity of G is 192

(c) Show that $64r^3 - 64r^2 + 3 = 0$

(3)

Given that r is a rational number

(d) write down the value of r

(1)

(e) show that a = 144

(2)

The sum to n terms of G is S_n

(f) Using logarithms, find the least value of n such that $S_n > 191.9$

(4)

Question 7 continued	

C B

Diagram **NOT** accurately drawn

Figure 2

Figure 2 shows triangle AOB

$$\overrightarrow{OA} = 4\mathbf{a} + 5\mathbf{b}$$

$$\overrightarrow{OB} = 8\mathbf{a} - \mathbf{b}$$

$$\overrightarrow{OD} = 15\mathbf{a} + 10\mathbf{b}$$

where
$$|\mathbf{a}| = |\mathbf{b}| = 1$$

- (a) (i) Find \overrightarrow{AB} in terms of **a** and **b**
 - (ii) Find, in its simplest form, the exact value of $|\overrightarrow{AB}|$

(3)

(b) Find the area of triangle AOB

(4)

The point C lies on AB and OD such that O, C and D are collinear.

(c) Use a vector method to find vector \overrightarrow{OC} as a simplified expression in terms of \mathbf{a} and \mathbf{b}

(5)

Question 8 continued	

9 (a) Using a formula given on page 2, show that

$$\cos 2\theta = 2\cos^2 \theta - 1 \tag{2}$$

(b) Hence show that

$$\int_{\frac{\pi}{3}}^{\frac{3\pi}{4}} \left(2\cos^2\theta - 1 \right) d\theta = -\frac{a + \sqrt{b}}{c}$$

where a, b and c are integers to be found.

(4)

Diagram **NOT** accurately drawn

Figure 3

Figure 3 shows part of the curve C_1 with equation $y = 2\cos^2 \theta - 1$ and part of the curve C_2 with equation $y = -\cos \theta$

Point B is the intersection of C_1 and C_2 as shown in Figure 3

Point $A\left(\frac{3\pi}{4},0\right)$ is the intersection of C_1 with the θ -axis as shown in Figure 3

Point $E\left(\frac{\pi}{2},0\right)$ is the intersection of C_2 with the θ -axis as shown in Figure 3

The finite region R, shown shaded in Figure 3, is bounded by the θ -axis, C_1 and C_2

(c) Use calculus to find, in its simplest form, the exact area of R

(8)

Question 9 continued	

10 A curve C has equation

$$y = \frac{5x - 2}{3x + 2} \qquad x \neq -\frac{1}{3}$$

- (a) Find the coordinates of the point where C intersects the
 - (i) x-axis
 - (ii) y-axis

(2)

- (b) Write down an equation of the asymptote to C that is
 - (i) parallel to the *x*-axis
 - (ii) parallel to the y-axis

(2)

(c) Sketch *C* on the opposite page. Show and label the asymptotes and the coordinates of the points where *C* crosses the coordinate axes.

(3)

Point A lies on C such that the gradient of C at A is parallel to the line with equation 4y-x=7

The normal to C at A intersects the x-axis at point D and the y-axis at point E Given that the x coordinate of A is positive,

(d) find, in its simplified form, the exact length of line DE

(11)

Question 10 continued
<i>y</i> ↑
O x

Question 10 continued	

Question 10 continued	
	(Total for Question 10 is 18 marks)
	TOTAL FOR PAPER IS 100 MARKS

