Please check the examination deta	ils bel	ow before ente	ring your candidate information
Candidate surname			Other names
Pearson Edexcel International GCSE	Cen	tre Number	Candidate Number
Time 2 hours		Paper reference	4PM1/02
Further Pure Market Paper 2	at	hema	tics
Calculators may be used.			Total Marks

Instructions

- Use **black** ink or ball-point pen.
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer **all** questions.
- Without sufficient working, correct answers may be awarded no marks.
- Answer the questions in the spaces provided
 - there may be more space than you need.
- You must NOT write anything on the formulae page.
 Anything you write on the formulae page will gain NO credit.

Information

- The total mark for this paper is 100.
- The marks for **each** question are shown in brackets
 - use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Check your answers if you have time at the end.
- Good luck with your examination.

Turn over ▶

P66025A
©2021 Pearson Education Ltd.

1/1/1/1/1/

International GCSE in Further Pure Mathematics Formulae sheet

Mensuration

Surface area of sphere = $4\pi r^2$

Curved surface area of cone = $\pi r \times \text{slant height}$

Volume of sphere = $\frac{4}{3}\pi r^3$

Series

Arithmetic series

Sum to *n* terms, $S_n = \frac{n}{2} [2a + (n-1)d]$

Geometric series

Sum to *n* terms,
$$S_n = \frac{a(1-r^n)}{(1-r)}$$

Sum to infinity, $S_{\infty} = \frac{a}{1-r} |r| < 1$

Binomial series

$$(1+x)^n = 1 + nx + \frac{n(n-1)}{2!}x^2 + \dots + \frac{n(n-1)\dots(n-r+1)}{r!}x^r + \dots$$
 for $|x| < 1, n \in \mathbb{Q}$

Calculus

Quotient rule (differentiation)

$$\frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{\mathrm{f}(x)}{\mathrm{g}(x)} \right) = \frac{\mathrm{f}'(x)\mathrm{g}(x) - \mathrm{f}(x)\mathrm{g}'(x)}{\left[\mathrm{g}(x)\right]^2}$$

Trigonometry

Cosine rule

In triangle ABC: $a^2 = b^2 + c^2 - 2bc \cos A$

$$\tan \theta = \frac{\sin \theta}{\cos \theta}$$

$$\sin(A+B) = \sin A \cos B + \cos A \sin B$$

$$\sin(A - B) = \sin A \cos B - \cos A \sin B$$

$$\cos(A+B) = \cos A \cos B - \sin A \sin B$$

$$\cos(A - B) = \cos A \cos B + \sin A \sin B$$

$$\tan(A+B) = \frac{\tan A + \tan B}{1 - \tan A \tan B}$$

$$\tan(A - B) = \frac{\tan A - \tan B}{1 + \tan A \tan B}$$

Logarithms

$$\log_a x = \frac{\log_b x}{\log_b a}$$

Answer all ELEVEN questions.

Write your answers in the spaces provided.

You must write down all the stages in your working.

- 1 Find the set of values for x for which
 - (a) 8x 7 < 5x + 5

(2)

(b) $2x^2 - 5x - 3 > 0$

(3)

(c) **both** 8x - 7 < 5x + 5 **and** $2x^2 - 5x - 3 > 0$

(1)

(Total for Question 1 is 6 marks)

_	a	4	1
2	f(x) = 2 +	$\frac{1}{5}x$	25

Given that f(x) can be expressed in the form $A - B(x + C)^2$ where A, B and C are constants,

(a) find the value of A, the value of B and the value of C.

(4)

- (b) Hence write down
 - (i) the maximum value of f(x),
 - (ii) the value of x for which this maximum occurs.

(2)

.....

Diagram **NOT** accurately drawn

Figure 1

Figure 1 shows a sector *OPQ* of a circle with centre *O*.

The radius of the circle is 18 cm and the angle POQ is $\frac{2\pi}{3}$ radians.

(a) Find the length of the arc PQ, giving your answer as a multiple of π

(2)

Figure 2 below shows the sector *OPQ* and the kite *OPTQ*.

Diagram **NOT** accurately drawn

Figure 2

PT is the tangent to the circle at P and QT is the tangent at Q, such that angle $PTQ = \alpha$ radians.

(b) (i) Find α in terms of π

(1)

(ii) Calculate, to 3 significant figures, the area of the region, shown shaded in Figure 2, which is bounded by the arc PQ and the tangents PT and QT.

(6)

Question 3 continued

4	The point A has coordinates $(-4, -10)$ and the point B has coordinates $(3, 11)$ The line I passes through A and B .	
	(a) Find an equation of <i>l</i> .	(2)
	The point P lies on l such that $AP:PB = 3:4$	
	(b) Find the coordinates of <i>P</i> .	(2)
	The point Q with coordinates (m, n) , where $m < 0$, lies on the line through P that is perpendicular to l .	(2)
	Given that the length of PQ is $\sqrt{10}$	
	(c) find the coordinates of Q .	(6)
	The point R has coordinates $(-11, -21)$	
	(d) Show that	
	(i) AB and RQ are equal in length,	
	(ii) AB and RQ are parallel.	(4)
	(e) Find the area of the quadrilateral <i>ABQR</i> .	(+)
	(c) I find the area of the quadriateral ADQR.	(2)

ς	2	S	2	2	Ž	9
	а	r	7	₹		ŀ
2	Ŋ	ķ	'n	d	,	ļ
	ς,	à	6	ò	S	ļ
	4	ľ		3		
	2	9	3	И	7	
١		١	2			
	y	ŧ	2			ŀ
	У	d		Z	ì	ŀ
	<	Z	Σ	Z	5	
	4	7	è	7		
	8	٩	ú	И	Į	
	2	S	2	2		ľ
	y	ŧ	7	₹		ŀ
2						5
	G	è	Ŕ	ř	۱	
	C	3			ı	
	ď	ş	Ę	Ę	ė	
ς	à	í		í	i	
	X	Z		ζ		ŀ
	S		7.		5	
	<	7	₹	7		
	Ġ	è	ú	è		
	Z	S	Z	S	e	ľ
ς	a	ľ		5		
	2	۲	2		7	ļ
	Z	4	2	4		١
	S	Z	Σ	Z	3	
	୯	7	S		,	
	di			è	ė	
ς						
	À	í	1	4		ŀ
						ļ
2	S	Ħ	٩	μ	ì	
	ζ	2		2	٤	
	C	3	Z	3	ζ	
Ś	å	Š	į	Š	7	,
	Я	Ľ	Л	ĸ		
					7	ļ
2	7	۷	Ì			
	C	7	r		ĺ	l
	Í	ij	۴	5	7	
	d	Ė		ķ		
ζ	à	í		ú	ø	١
	ă	í	è	6	ì	i
?	Я	ŕ	1			ļ
2	G	ĕ	É	2		ĺ
>		1				
	ð	9	7	2		
ς						
	>					
2						
\rangle						
١						

Question 4 continued

5	The <i>n</i> th term of a geometric series with common ratio r is u_n	
	Given that $u_2 + u_4 = 212.5$ and that $u_3 + u_4 = 62.5$	
	(a) find the two possible values of r .	(5)
	Given that the series is convergent with sum to infinity S ,	
	(b) find the exact value of S.	(2)

 $f(x) = x^3 + (p+1)x^2 - 10x + q$ 6

where p and q are integers.

Given that (x - 3) is a factor of f(x)

(a) show that 9p + q + 6 = 0

(3)

Given that (x + p), where p > 0, is also a factor of f(x)

(b) show that $p^2 + 10p + q = 0$

(3)

(c) Hence find the value of p and the value of q.

(5)

(d) Using your values of p and q, factorise f(x) completely.

(2)

Question 6 continued

7 (a) Complete the table of values for $y = 3^{\frac{x}{4}} + 2$

Give your answers to 2 decimal places where appropriate.

(2)

x	0	1	2	3	4	5
y	3	3.32				5.95

(b) On the grid opposite, draw the graph of

$$y = 3^{\frac{x}{4}} + 2 \qquad \text{for } 0 \leqslant x \leqslant 5$$

(2)

(c) By drawing a suitable straight line on the grid, obtain an estimate, to one decimal place, of the root of the equation

$$\log_3(6 - 2x)^4 - x = 0$$

in the interval $0 \le x \le 5$

(5)

20

Question 7 continued Turn over for a spare grid if you need to redraw your graph.

Question 7 continued	

Question 7 continued

Only use this grid if you need to redraw your graph.

(Total for Question 7 is 9 marks)

ıs
ıs

$$\log_4 a + 3\log_8 b = \frac{5}{2}$$

$$2^a = \frac{16^4}{4^{b^2}}$$

/	0	\
ſ	w	- 1
	ര	
ı.	v	,

Diagram **NOT** accurately drawn

Figure 3

Figure 3 shows a metal solid *S*.

The solid is a right triangular prism.

The cross section of S is an equilateral triangle with sides of length x cm. The length of S is 4x cm.

The prism is being heated so that the cross sectional area is increasing at a constant rate of $0.03 \, \text{cm}^2/\text{s}$.

(a) Find, giving your answer to 3 significant figures, $\frac{dx}{dt}$ when x = 2

(5)

(3)

(b) Find the rate of increase, in cm³/s, of the volume of S when x = 2

Question 9 continued	

10 (a) Solve the equation

$$\tan x^{\circ} = -3 \qquad \text{for } 0 \leqslant x < 360$$

Give your solutions to the nearest whole number.

(3)

Given that

$$7\sin^2\theta + \sin\theta\cos\theta = 6$$

(b) show that

$$\tan^2\theta + \tan\theta - 6 = 0$$

(3)

(c) Hence solve the equation

$$7\sin^2 y^\circ + \sin y^\circ \cos y^\circ = 6 \qquad \text{for } 0 \leqslant y < 360$$

Give your solutions to the nearest whole number.

(4)

	 	 	 	 	 		 	 	 	• • • • • • • • • • • • • • • • • • • •	 	 	 		 	 	 	 	
	 	 	 	 	 	• • • • • • •	 	 • • • • • • •	 	• • • • • • • • • • • • • • • • • • • •	 	 	 	• • • • • • • •	 	 	 	 	

Question 10 continued

(8)

Figure 4

The region R, shown shaded in Figure 4, is bounded by the curve with equation $y = e^x$, the curve with equation $y = 4e^{-x}$, the straight line with equation x = a, the x-axis and the y-axis.

When the region R is rotated through 360° about the x-axis, the volume of the solid generated is

$$k - 8\pi e^{-4}$$

where k is a constant.

Using algebraic integration, find a possible value of a and the exact corresponding value of k.

Question 11 continued	
	(Total for Question 11 is 8 marks)
	TOTAL FOR PAPER IS 100 MARKS

