Please check the examination d	etails below before entering	your candidate information
Candidate surname	Oth	ner names
Pearson Edexcel International GCSE Friday 10 Jai	Centre Number nuary 202	Candidate Number
Morning (Time: 2 hours)	Paper Refer	ence 4PM1/01R
Further Pure N Paper 1R	Mathematic	CS
•		

Instructions

- Use **black** ink or ball-point pen.
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer all questions.
- Without sufficient working, correct answers may be awarded no marks.
- Answer the questions in the spaces provided
 - there may be more space than you need.
- You must NOT write anything on the formulae page.
 Anything you write on the formulae page will gain NO credit.

Information

- The total mark for this paper is 100.
- The marks for **each** question are shown in brackets
 - use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Check your answers if you have time at the end.

Turn over ▶

International GCSE in Further Pure Mathematics Formulae sheet

Mensuration

Surface area of sphere = $4\pi r^2$

Curved surface area of cone = $\pi r \times \text{slant height}$

Volume of sphere = $\frac{4}{3}\pi r^3$

Series

Arithmetic series

Sum to *n* terms, $S_n = \frac{n}{2} [2a + (n-1)d]$

Geometric series

Sum to *n* terms,
$$S_n = \frac{a(1-r^n)}{(1-r)}$$

Sum to infinity, $S_{\infty} = \frac{a}{1-r} |r| < 1$

Binomial series

$$(1+x)^n = 1 + nx + \frac{n(n-1)}{2!}x^2 + \dots + \frac{n(n-1)\dots(n-r+1)}{r!}x^r + \dots$$
 for $|x| < 1, n \in \mathbb{Q}$

Calculus

Quotient rule (differentiation)

$$\frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{\mathrm{f}(x)}{\mathrm{g}(x)} \right) = \frac{\mathrm{f}'(x)\mathrm{g}(x) - \mathrm{f}(x)\mathrm{g}'(x)}{\left[\mathrm{g}(x)\right]^2}$$

Trigonometry

Cosine rule

In triangle *ABC*: $a^2 = b^2 + c^2 - 2bc \cos A$

$$\tan \theta = \frac{\sin \theta}{\cos \theta}$$

$$\sin(A+B) = \sin A \cos B + \cos A \sin B$$

$$\sin(A - B) = \sin A \cos B - \cos A \sin B$$

$$\cos(A+B) = \cos A \cos B - \sin A \sin B$$

$$\cos(A - B) = \cos A \cos B + \sin A \sin B$$

$$\tan(A+B) = \frac{\tan A + \tan B}{1 - \tan A \tan B}$$

$$\tan(A - B) = \frac{\tan A - \tan B}{1 + \tan A \tan B}$$

Logarithms

$$\log_a x = \frac{\log_b x}{\log_b a}$$

Answer all ELEVEN questions.

Write your answers in the spaces provided.

You must write down all the stages in your working.

1	Given that $\frac{a+\sqrt{3}}{2-\sqrt{3}}$	$=11+b\sqrt{3}$	where a and	b are	integers,
---	--	-----------------	-------------	-------	-----------

find the value of a and the value of b.

Г	4	. 1	١
L	_	٠,	
٦.		1	

(Total for Question 1 is	s 4 marks)

 (a) Write f(x) in the form a - b(x + c)² where a, b and c are integers to be found. (b) Hence, or otherwise, find (i) the maximum value of f(x) 	
(i) the maximum value of $f(x)$	
(ii) the value of x for which this maximum occurs. (2)	

3	Given that $y = e^{2x}(x^2 + 1)$	
	(a) find $\frac{dy}{dx}$	(3)
	The straight line l is the tangent to the curve with equation $y = e^{2x}(x^2 + 1)$ at the point on the curve where $x = 0$	1
	(b) Find an equation for l in the form $y = mx + c$	(3)

4	$f(x) = 2x^3 + ax^2 + bx + 18$ where a and b are constants	
	When $f'(x)$ is divided by $(x-2)$ the remainder is 5	
	Given that $(x-2)$ is a factor of $f(x)$	
	(a) find the value of a and the value of b .	
		(6)
	(b) Express $f(x)$ as a product of linear factors.	(3)
	(c) Hence use algebra to solve the equation $f(x) = 0$	
		(2)

(2)

(b) Hence, or otherwise, find the exact solutions of the equation

$$\log_2 x - \log_4 32 + \frac{1}{4} \log_x 16 = 0$$

(7)

6 (a) Complete the table of values for

$$y = x - \frac{3}{x^2}$$

giving your answers to one decimal place where appropriate.

x	0.5	1	1.5	2	3	4	5	6
У	-11.5			1.3	2.7			5.9

(2)

(b) On the grid opposite, draw the graph of
$$y = x - \frac{3}{x^2}$$
 for $0.5 \le x \le 6$

(2)

(c) By drawing a suitable straight line on the grid, obtain estimates, to one decimal place, of each of the two roots of the equation

$$2x^3 - 6x^2 + 3 = 0$$

in the interval $0.5 \le x \le 6$

(5)

Question 6 continued y6 5 4 3 2 1 0 -1-3 **-**5 -8 _9 -10-11-12

Turn over for a spare grid if you need to redraw your graph.

Question 6 continued	

Question 6 continued

Only use this grid if you need to redraw your graph.

(Total for Question 6 is 9 marks)

7	An arithmetic series P has first term a , common difference d and n th term u_n	
	Given that $u_5 = 4x + 6$ and that $u_8 = 7x + 3$	
	(a) (i) show that $d = x - 1$	
	(ii) find the value of a	(4)
		(4)
	Given further that $u_9 = 42$	
	(b) find the value of x	(2)
	The sum of the first n terms of P is S_n	(-)
	(c) Find the value of n for which $S_{(n+1)} = 12u_n + 18$	
	(c) That the value of n for which $S_{(n+1)} = 12a_n + 16$	(5)

Question 7 continued	

8	A particle <i>P</i> moves along the positive <i>x</i> -axis. At time <i>t</i> seconds $(t \ge 0)$ the velocity, v m/s, of <i>P</i> is given by $v = 3 + 5t - 2t^2$										
	At time t seconds, P is at the point with coordinates $(x, 0)$.										
	Given that at time $t = 0$, P is at the point with coordinates $(5, 0)$, find the maximum value of x , justifying that this is a maximum value.										
		(8)									

Question 8 continued	

9	The line l_1 with equation $y + 2x - 4 = 0$ passes through the point P with coordinates	
	(a, 6) and the point Q with coordinates $(3, b)$.	
	(a) Find the value of a and the value of b.	(2)
	The line I passes through point P and is perpendicular to I	(2)
	The line l_2 passes through point P and is perpendicular to l_1	
	The point R , with coordinates (e, f) lies on l_2 such that $PR = 6\sqrt{5}$	
	(b) Find the two possible pairs of values of <i>e</i> and <i>f</i> .	(8)
	Given that $e < 0$,	
	(c) find the area of triangle <i>PQR</i> .	
		(3)
	The points P , Q and R lie on a circle C .	
	(d) Find the coordinates of the centre of C.	(2)
		(2)

Question 9 continued	

Figure 1

Figure 1 shows quadrilateral OABC with

$$\overrightarrow{OA} = 2\mathbf{a} - \mathbf{b}$$
 $\overrightarrow{OB} = 3\mathbf{a} + \mathbf{b}$ $\overrightarrow{BC} = -\mathbf{a} + 3\mathbf{b}$

(a) Find \overrightarrow{AB} as a simplified expression in terms of **a** and **b**.

(2)

(b) Prove that \overrightarrow{OC} is parallel to \overrightarrow{AB}

(2)

The diagonals, OB and AC, intersect at the point X.

(c) Using a vector method find the ratio AX:XC

(7)

							١	
						1		
							N	
				è				
	₫							
	y	6	۵	4	ø	b		
		3	ų	9	≺			
						2		
	٧	è	'n	ĸ.	ÌX.	\	1	
		7	2		۴		1	
	Ì		á	z	△	1		
	ð	۹	۳	9	면			
	0	á		2	ŭ	>		
	4							
		è						
		4						
				'n				
		Z						
			×	6	×	>		
			è	5	ę	ζ	>	
				5	i	S	>	
>	4	S	2	5	i	ζ	>	
>	4	S	2	5	į	8	3	
	4	S	2	5	į	3	2	
	4	S	2	5	ĺ	5	3	
	4		2	5		3	3	
	3		1		į	3	3	
	3		1	5	į	3	3	
	3					3	}	
						3	3	
						3	>	
							3	
						3	3	
							3	
							\ \ \ \	
							\ \ \	
							\ \ \	
	3							
	3							
	3							
	3							
	3							

Question 10 continued	

Figure 2

Figure 2 shows part of the curve C with equation $y = \sqrt{x-2}$ Figure 2 also shows the straight line l with equation y = b for x > 0 where b > 0

Given that C and l intersect at the point P with coordinates (a, b), where 2 < a < 16

(a) show that $b^2 = a - 2$

(2)

The finite region R bounded by C, the straight line with equation x = 16 and l, shown shaded in Figure 2, is rotated through 360° about the x-axis to form a solid S.

Given that the volume of the solid formed is 50π

(b) use algebraic integration to find the value of a and the value of b.

|
 |
|------|------|------|------|------|------|------|------|------|------|------|------|------|------|
| | | | | | | | | | | | | | |
|
 |

Question 11 continued

