| Please check the examination details belo         | ow before entering your candidate information |
|---------------------------------------------------|-----------------------------------------------|
| Candidate surname                                 | Other names                                   |
| Centre Number Candidate Nu Pearson Edexcel Interi |                                               |
| Friday 26 May 2023                                |                                               |
| Afternoon (Time: 2 hours)                         | Paper reference 4PM1/01                       |
| Further Pure Math                                 | hematics                                      |
| Calculators may be used.                          | Total Marks                                   |

## **Instructions**

- Use **black** ink or ball-point pen.
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer all questions.
- Without sufficient working, correct answers may be awarded no marks.
- Answer the questions in the spaces provided
  - there may be more space than you need.
- You must NOT write anything on the formulae page.
   Anything you write on the formulae page will gain NO credit.

## Information

- The total mark for this paper is 100.
- The marks for **each** question are shown in brackets
  - use this as a guide as to how much time to spend on each question.

# **Advice**

- Read each question carefully before you start to answer it.
- Check your answers if you have time at the end.

Turn over





## **International GCSE in Further Pure Mathematics Formulae sheet**

#### Mensuration

Surface area of sphere =  $4\pi r^2$ 

Curved surface area of cone =  $\pi r \times \text{slant height}$ 

Volume of sphere =  $\frac{4}{3}\pi r^3$ 

#### **Series**

## **Arithmetic series**

Sum to *n* terms,  $S_n = \frac{n}{2} [2a + (n-1)d]$ 

## Geometric series

Sum to *n* terms, 
$$S_n = \frac{a(1-r^n)}{(1-r)}$$

Sum to infinity,  $S_{\infty} = \frac{a}{1-r} |r| < 1$ 

### **Binomial series**

$$(1+x)^n = 1 + nx + \frac{n(n-1)}{2!}x^2 + \dots + \frac{n(n-1)\dots(n-r+1)}{r!}x^r + \dots$$
 for  $|x| < 1, n \in \mathbb{Q}$ 

#### **Calculus**

## **Quotient rule (differentiation)**

$$\frac{\mathrm{d}}{\mathrm{d}x} \left( \frac{\mathrm{f}(x)}{\mathrm{g}(x)} \right) = \frac{\mathrm{f}'(x)\mathrm{g}(x) - \mathrm{f}(x)\mathrm{g}'(x)}{\left[\mathrm{g}(x)\right]^2}$$

## **Trigonometry**

### Cosine rule

In triangle ABC:  $a^2 = b^2 + c^2 - 2bc \cos A$ 

$$\tan \theta = \frac{\sin \theta}{\cos \theta}$$

$$\sin(A+B) = \sin A \cos B + \cos A \sin B \qquad \sin(A-B) = \sin A \cos B - \cos A \sin B$$

$$\sin(A - B) = \sin A \cos B - \cos A \sin B$$

$$\cos(A+B) = \cos A \cos B - \sin A \sin B$$

$$\cos(A - B) = \cos A \cos B + \sin A \sin B$$

$$\tan(A + B) = \frac{\tan A + \tan B}{1 - \tan A \tan B}$$

$$\tan(A - B) = \frac{\tan A - \tan B}{1 + \tan A \tan B}$$

## Logarithms

$$\log_a x = \frac{\log_b x}{\log_b a}$$



# Answer all ELEVEN questions.

# Write your answers in the spaces provided.

You must write down all the stages in your working.

1 (a) Show that  $\sum_{r=1}^{n} (3r+2) = \frac{n}{2}(3n+7)$ 

(3)

(b) Hence, or otherwise, evaluate  $\sum_{r=10}^{40} (3r+2)$ 

**(2)** 

(Total for Question 1 is 5 marks)



| 2 | $y = (\sin 2x)\sqrt{3 + 2x}$ |
|---|------------------------------|

| Show that | $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\sin 2x}{}$ | $\frac{+(A+Bx)\cos 2x}{\sqrt{3+2x}}$ | where $A$ and $B$ are integers to | o be found. (5) |
|-----------|------------------------------------------------------|--------------------------------------|-----------------------------------|-----------------|
|           |                                                      |                                      |                                   |                 |
|           |                                                      |                                      |                                   |                 |
|           |                                                      |                                      |                                   |                 |
|           |                                                      |                                      |                                   |                 |
|           |                                                      |                                      |                                   |                 |
|           |                                                      |                                      |                                   |                 |
|           |                                                      |                                      |                                   |                 |
|           |                                                      |                                      |                                   |                 |
|           |                                                      |                                      |                                   |                 |
|           |                                                      |                                      |                                   |                 |
|           |                                                      |                                      |                                   |                 |
|           |                                                      |                                      |                                   |                 |
|           |                                                      |                                      |                                   |                 |
|           |                                                      |                                      |                                   |                 |



(5)



Figure 1

Figure 1 shows part of the curve with equation  $y = \frac{x}{2} + \frac{4}{x^2}$  in the interval 0.8 < x < 7

By drawing a suitable straight line on the grid, obtain an estimate, to one decimal place, of the roots of the equation  $3x^3 - 12x^2 + 8 = 0$  in the interval 0.8 < x < 7

|  | <br> | <br> | <br> | <br> | <br> |
|--|------|------|------|------|------|
|  |      |      |      |      |      |
|  |      |      |      |      |      |
|  |      |      |      |      |      |
|  | <br> | <br> | <br> | <br> | <br> |
|  |      |      |      |      |      |
|  |      |      |      |      |      |
|  |      |      |      |      |      |
|  | <br> | <br> | <br> | <br> | <br> |
|  |      |      |      |      |      |
|  |      |      |      |      |      |





| 4 | A particle P is moving along the x-axis. At time t seconds, $t \ge 0$ , the velocity, $v \text{ m/s}$ , of P is given by $v = 2t^2 - 16t + 30$ |     |
|---|------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|   | (a) Find the acceleration, in $m/s^2$ , of P when $t = 5$                                                                                      | (2) |
|   | $P$ comes to instantaneous rest at the points $M$ and $N$ at times $t_1$ seconds and $t_2$ seconds where $t_2 > t_1$                           |     |
|   | (b) Find the exact distance MN                                                                                                                 | (8) |
|   |                                                                                                                                                |     |
|   |                                                                                                                                                |     |
|   |                                                                                                                                                |     |
|   |                                                                                                                                                |     |
|   |                                                                                                                                                |     |
|   |                                                                                                                                                |     |
|   |                                                                                                                                                |     |
|   |                                                                                                                                                |     |
|   |                                                                                                                                                |     |
|   |                                                                                                                                                |     |
|   |                                                                                                                                                |     |
|   |                                                                                                                                                |     |
|   |                                                                                                                                                |     |
|   |                                                                                                                                                |     |
|   |                                                                                                                                                |     |
|   |                                                                                                                                                |     |





A solid cuboid has width x cm, length 4x cm and height h cm.

The volume of the cuboid is 75 cm<sup>3</sup> and the surface area of the cuboid is Scm<sup>2</sup>

(a) Show that  $S = 8x^2 + \frac{375}{2x}$ 

**(4)** 

Given that x can vary, using calculus,

- (b) (i) find to 3 significant figures, the value of x for which S is a minimum,
  - (ii) justify that this value of x gives a minimum value of S

**(5)** 

(c) Find, to 3 significant figures, the minimum value of S

**(2)** 





| Question 5 continued |  |
|----------------------|--|
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |
|                      |  |





| 6 | Solve the equation |                                           |     |
|---|--------------------|-------------------------------------------|-----|
|   |                    | $\log_2 x^3 + \log_4 x^2 - 3\log_x 2 = 0$ |     |
|   | giving your answer | s to 3 significant figures.               |     |
|   |                    |                                           | (8) |
|   |                    |                                           |     |
|   |                    |                                           |     |
|   |                    |                                           |     |
|   |                    |                                           |     |
|   |                    |                                           |     |
|   |                    |                                           |     |
|   |                    |                                           |     |
|   |                    |                                           |     |
|   |                    |                                           |     |
|   |                    |                                           |     |
|   |                    |                                           |     |
|   |                    |                                           |     |
|   |                    |                                           |     |
|   |                    |                                           |     |
|   |                    |                                           |     |
|   |                    |                                           |     |
|   |                    |                                           |     |
|   |                    |                                           |     |
|   |                    |                                           |     |
|   |                    |                                           |     |
|   |                    |                                           |     |
|   |                    |                                           |     |
|   |                    |                                           |     |
|   |                    |                                           |     |
|   |                    |                                           |     |
|   |                    |                                           |     |
|   |                    |                                           |     |
|   |                    |                                           |     |
|   |                    |                                           |     |





7 The equation of a curve is  $y = \sqrt{\frac{e^{4x}}{2x - 3}}$ 

When x is increased to  $(x + \delta x)$ , y increases to  $(y + \delta y)$  where  $\delta x$  and  $\delta y$  are small.

(a) Show that  $\delta y \approx \frac{e^{2x}(4x-7)}{(2x-3)^{\frac{3}{2}}} \delta x$ 

**(7)** 

Given that x = 2.5

(b) find an estimate, to 2 significant figures, of the value of  $\delta y$  when the value of x increases by 0.2%

(3)

| <br> | <br> |  |
|------|------|--|
|      |      |  |
| <br> | <br> |  |
|      |      |  |



| Question 7 continued |     |
|----------------------|-----|
|                      |     |
|                      |     |
|                      |     |
|                      |     |
|                      |     |
|                      |     |
|                      |     |
|                      |     |
|                      |     |
|                      |     |
|                      |     |
|                      |     |
|                      |     |
|                      |     |
|                      |     |
|                      |     |
|                      |     |
|                      |     |
|                      |     |
|                      |     |
|                      | ••• |
|                      |     |
|                      |     |
|                      | ••• |
|                      |     |
|                      |     |





| 8 | $f'(x) = 18x^2 - 2x + 13$                                                               |     |  |  |  |
|---|-----------------------------------------------------------------------------------------|-----|--|--|--|
|   | Given that $(2x-1)$ is a factor of $f(x)$                                               |     |  |  |  |
|   | show that the curve with equation $y = f(x)$ has only one intersection with the x-axis. | (9) |  |  |  |
|   |                                                                                         |     |  |  |  |
|   |                                                                                         |     |  |  |  |
|   |                                                                                         |     |  |  |  |
|   |                                                                                         |     |  |  |  |
|   |                                                                                         |     |  |  |  |
|   |                                                                                         |     |  |  |  |
|   |                                                                                         |     |  |  |  |
|   |                                                                                         |     |  |  |  |
|   |                                                                                         |     |  |  |  |
|   |                                                                                         |     |  |  |  |
|   |                                                                                         |     |  |  |  |
|   |                                                                                         |     |  |  |  |
|   |                                                                                         |     |  |  |  |
|   |                                                                                         |     |  |  |  |
|   |                                                                                         |     |  |  |  |
|   |                                                                                         |     |  |  |  |
|   |                                                                                         |     |  |  |  |
|   |                                                                                         |     |  |  |  |
|   |                                                                                         |     |  |  |  |
|   |                                                                                         |     |  |  |  |
|   |                                                                                         |     |  |  |  |
|   |                                                                                         |     |  |  |  |
|   |                                                                                         |     |  |  |  |
|   |                                                                                         |     |  |  |  |
|   |                                                                                         |     |  |  |  |
|   |                                                                                         |     |  |  |  |
|   |                                                                                         |     |  |  |  |



9 (a) Using the formulae on page 2, show that

(i) 
$$\cos^2 A = \frac{\cos 2A + 1}{2}$$

(ii) 
$$\sin^2 A = \frac{1 - \cos 2A}{2}$$

**(4)** 

(b) Show that

$$(2\sin x - \cos x)(\sin x - 3\cos x) = \frac{1}{2}(\cos 2x - 7\sin 2x + 5)$$

(5)

$$y = (2\sin x - \cos x)(\sin x - 3\cos x)$$

(c) Solve, for  $0^{\circ} \leqslant x \leqslant 180^{\circ}$  the equation,  $\frac{dy}{dx} = 0$ 

Give your answers to the nearest whole number.

(4)



| Question 9 continued |
|----------------------|
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |
|                      |





10 O, A and B are fixed points such that

$$\overrightarrow{OA} = (b+1)\mathbf{i} + b\mathbf{j}$$

$$\overrightarrow{AB} = 3i$$

 $\overrightarrow{OA} = (b+1)\mathbf{i} + b\mathbf{j}$   $\overrightarrow{AB} = 3\mathbf{i}$ The unit vector parallel to  $\overrightarrow{OB}$  is  $\frac{\sqrt{17}}{34} [(3a+2)\mathbf{i} + b\mathbf{j}]$ 

Given that a and b are constants where a > 0 and b > 0

find the exact value of

- (i) a
- (ii) *b*

| 1 | 1 | Λ | ١ |
|---|---|---|---|
| ( | Ш | U | J |

|      | <br>  |
|------|-------|
|      |       |
|      |       |
|      | <br>  |
|      | <br>  |
| <br> | <br>  |
|      |       |
| <br> | <br>  |
| <br> | <br>  |
|      | <br>  |
|      |       |
|      | <br>  |
|      |       |
| <br> | <br>  |
|      |       |
|      | ••••• |



| Question 10 continued |  |
|-----------------------|--|
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |
|                       |  |



$$f(x) = 10 + 6x - x^2$$

Given that f(x) can be written in the form  $A(x+B)^2 + C$  where A, B and C are constants,

(a) find the value of A, the value of B and the value of C

(4)

- (b) Hence, or otherwise, find
  - (i) the value of x for which f(x) has its greatest value
  - (ii) the greatest value of f(x)

(2)

The curve C has equation y = f(x)

The curve S with equation  $y = x^2 - x + 13$  intersects curve C at two points.

(c) Find the x coordinate of each of these two points.

(3)

(d) Use algebraic integration to find the exact area of the finite region bounded by the curve C and the curve S.

(5)

| <br> |
|------|------|------|------|------|------|------|
|      |      |      |      |      |      |      |
|      |      |      |      |      |      |      |
|      |      |      |      |      |      |      |
|      |      |      |      |      |      |      |
| <br> |
|      |      |      |      |      |      |      |
|      |      |      |      |      |      |      |
|      |      |      |      |      |      |      |
|      |      |      |      |      |      |      |
|      |      |      |      |      |      |      |
| <br> |
|      |      |      |      |      |      |      |
|      |      |      |      |      |      |      |
|      |      |      |      |      |      |      |
|      |      |      |      |      |      |      |
| <br> |
|      |      |      |      |      |      |      |
|      |      |      |      |      |      |      |
|      |      |      |      |      |      |      |



| <br>                                    |
|-----------------------------------------|
|                                         |
|                                         |
|                                         |
| <br>                                    |
|                                         |
|                                         |
|                                         |
| <br>                                    |
|                                         |
|                                         |
|                                         |
| <br>                                    |
|                                         |
|                                         |
|                                         |
| <br>(Total for Question 11 is 14 marks) |
| TOTAL FOR PAPER IS 100 MARKS            |

