@ Pearson

Edexcel

Examiners’ Report

Principal Examiner Feedback
Summer 2024

Pearson Edexcel GCSE In
Computer Science (1CP2/02)

Paper 2: Application of Computational
Thinking

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK'’s largest awarding body.
We provide a wide range of qualifications including academic, vocational, occupational and
specific programmes for employers. For further information visit our qualifications websites
at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using
the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world’s leading learning company. Our aim is to help everyone
progress in their lives through education. We believe in every kind of learning, for all kinds
of people, wherever they are in the world. We've been involved in education for over 150
years, and by working across 70 countries, in 100 languages, we have built an international
reputation for our commitment to high standards and raising achievement through
innovation in education. Find out more about how we can help you and your students at:
www.pearson.com/uk

Summer 2024

Publications Code 1CP2_02_2406_ER

All the material in this publication is copyright
© Pearson Education Ltd 2024

http://www.edexcel.com/
http://www.btec.co.uk/
http://www.edexcel.com/contactus
http://www.pearson.com/uk

Introduction

This is the third examination of the Edexcel GCSE Computer Science (9-1), with the paper two
onscreen exam. The programming language required is Python 3.

Students are supplied with a question paper, a programming language subset document, and a code
file for each question. Students are required to amend the code files and save their work, using a
different file name.

Centres compress the code file responses for each student. The compressed files are uploaded to
Edexcel for external assessment, via the Learner Work Transfer platform.

Centre submissions

The ICE document for this series set out the format in which students’ completed code files were to

be submitted. The majority of centres were able to follow the instructions accurately, ensuring that
a single zipped file of the COMPLETED_CODE folder was provided for each student. The submissions
were correctly identified with the centre and student number.

General

Range of marks
A full range of marks was awarded for Paper 2. Examiners did see some submissions which achieved
the full 75 marks available.

Attempting all questions

In common with previous years, there were a number of scripts where students did not attempt Q05
and QO06, thereby missing an opportunity to access some marks. There are partial marks that could
be awarded in each question. Students are reminded to attempt all the questions on the paper.

Readability

It is not necessary to comment every line of code in a solution. In common with previous years,
examiners saw some responses where the number of comments exceeded the number of code lines.
Comments are to help understand the logic, so should be placed, more helpfully, at the start of
blocks of code. Excessive commenting makes the response difficult to read.

White space also can help with readability, but there is no requirement to double space code. Use
white space between blocks of logic. Single spacing is appropriate for code.

Execute and test the code

Marks are awarded in some questions, regardless if the code interprets and executes. However, in
others, marks are awarded for interpretation and functionality. Students should always attempt to
execute the code. The IDE will highlight syntax errors in the code editor or identify them with a
runtime error during execution. Students can fix syntax and indentation errors this way.

In Q02, where students chose correct lines of code, the code should be executed with the test data
given in the question paper. Execution would quickly identify that some incorrect lines were chosen.

Q01 — Fix the errors

This type of question has appeared in all previous papers.

Solutions required students to fix syntax errors, runtime errors, and logic errors. The resulting
program does not have to translate nor execute.

The majority of students submitted good responses.

The most frequently lost marks were the corrections of the logic errors (MP1.8, MP1.9, and MP1.10).

Q01 Example 1

1

W 0 U WwWN

<
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

Global variables
o
rainbow = ["Violet", "Indigo", "Blue", "Green", "Yellow", "Orange", "Red"]

waveTable = [380, 425, 450, 492, 577, 597, ©622]
found = False

index = 0

wavelength = 123

colour = ""

User chooses a colour index
index = int(input("Enter an index: "))
if (index < 0):
print ("Indexes cannot be zero")
elif (index > ©):
print ("Indexes cannot be more than six")
else:
colour = rainbow[index]
print (colour)

User chooses a colour based on wavelength
wavelength = int (input ("Enter a wavelength "))
if ((wavelength < 380) or (wavelength > 622)):
print ("Invalid wavelength™)
else:
index = 0
Look for a wavelength less than or equal to user's choice
while (not found):
if (wavelength == waveTable[index]):
found = True
print (rainbow[index])
elif (waveTable[index] <= wavelength):
found = True
print (rainbow[index])
else:
index = index + 1

This example was awarded eight marks. This response demonstrates an understanding of how to fix
syntax errors and runtime errors. However, it has not correctly amended the code for all the logic

errors.

Q01 Example 2

1

~N s W N

(o]

9
10
11
12
13
| 14
15
16
17
18
19
20
21
22
[23
Il 24
25
26
27
28
29
30
31
I 32
i 33
i 34
i 35
36
37
38
39
40

+ Global variables

b
rainbow = ["Violet", "Indigo", "Blue", "Green", "Yellow", "Orange",

waveTable = [380, 425, 450, 492, 577, 597, ©622]
found = False

index = 0

wavelength = 123

colour = ""

User chooses a colour index
index = int(input("Enter an index:"))
if (index < 0):
print ("Indexes cannot be zero")
elif (index > €):
print ("Indexes cannot be more than six")
else:
colour = rainbow[index]
print (input(colour))

User chooses a colour based on wavelength
wavelength = int (input ("Enter a wavelength "))
if ((wavelength < 380 and wavelength > 622)):
print ("Invalid wavelength™)
else:
[index] = 1
Look for a wavelength less than or equal to user's choice
while (not found):
if (wavelength == waveTable[index]):
found = True
print (rainbow[index])
elif (waveTable[index] >= wavelength):
found = True
print (rainbow[index - 2])
else:
index = index + 1

"Red"]

This example was awarded six marks. This response demonstrates an understanding of how to fix
syntax errors. The runtime error on line 22 was corrected, but the correction is not appropriate in
the logic of the problem.

Q02 — Choose the lines

Solutions required selecting the correct line of code from four options.

A small number of responses deleted the lines of code that were not required. These were awarded
appropriately, although they did not follow the instructions given on the paper.

Once, all the selections are made, students can execute the code to find and amend any lines where
the wrong option has been chosen.

The majority of students submitted good responses.

The most frequently missed marks were those associated with the boundary conditions of the
alphabet. The selections often included the boundary conditions (A, a, Z, z), rather than excluding

them.

Q02 Example 1

1

Sy s W N

~J

O @®

~J

O @

~J

O @

-]

O @

R R R WWWWWwWwWwwWwwhhhNNNNDNDMNMNMNNNNMNNNRERERPRPRRERRRERRE

s WP o

s W= O SN W= O

S sWwWN = O

.
¥ Global variables
B
plainText = ""
cipherText = ""
shift = 0
B
¥ Main program

plainText = input ("Enter a messsz ")
shift = int (input ("Enter the)
for letter in plainText:
¥ =====> Choose the correct line to check for alphabetic letters
#if (letter.isalnum ()):
¥1if (letter.islower ()):
¥if (letter.upper ()):
if (letter.isalpha ()):
value = ord (letter)
value = value + shift
¥ =====> Choose the correct line to check for upper case
#if (letter.upper ()):
#if (letter.isalpha ()):
#if (letter.islower ()):
if (letter.isupper ()):
=====> Choose the correct line to check if the letter i:s
#if (value > ord ('Z')):
if (value >= ord ('2')):
#if (value < chr ('Z'')):
#if (value < ord ('Z')):
value = value - 26
=====> Choose the correct line to check if the letter i:
elif (value <= ord ('A'")):
#elif (value > chr ('A')):
#elif (value < ord ('A')):
$elif (value > ord ('A')):
value = value + 26

45
46 # =====> Choose the correct line to check for lower case
47 #elif (letter.lower ()):
48 elif (letter.islower ()):
49 ¥elif (letter.isupper ()):
50 #elif (letter.isalpha ()):
51
52 $ =====> Choose the correct line to check if the letter i:
53 #if (value >= chr ('z')):
54 #if (value < ord ('z')):
55 if (value > ord ('z')):
56 #if (value <= chr ('z")):
57 value = value = 26
58
59 # =====> Choose the correct line to check if the letter is
60 elif (value < ord ('a')):
61 $elif (value < chr ('z')):
Il 62 #elif (value != ord ('a')):
63 #elif (value == chr ('z')):
64 value = value + 26
65
66 ¥ =====> Choose the correct line to set the variable newlette:
67 #newlLetter = ord (wvalue)
68 newLetter = chr (value)
69 #newletter = ord (letter)
70 ¥newlLetter = chr (letter)
| 71
I 72 ¥ =====> Choose the correct line to create the encrypted strir
73 fcipherText = newletter + cipherText
74 #newletter = cipherText + newlLetter
75 fnewlLetter = newletter + cipherText
76 cipherText = cipherText + newletter
77
78 else:
79 # =====> Choose the correct line to create the encrypted strir
80 ¥cipherText = letter + cipherText
81 cipherText = cipherText + letter
82 #letter = cipherText + letter
83 fletter = letter + cipherText
84
85 print ("Plain text: ", plainText)
86 print("Cipher text: ", cipherText)
87

This example was awarded eight marks. It demonstrates good use of the built-in string handling

functions, but does include the boundary conditions on the alphabet.

Q02 Example 2

1

W d o s WwN

R g Y
B Wk oW

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
&5
36
37
38
39
40
41
42
43
44
45

o
¥ Global variables

plainText = ""
cipherText = ""
shift =0

¥ Main program

plainText = input ("Enter a message: ")

shift = int (input ("Enter the shift: "))

for letter in plainText:

=====> Choose the correct line to check for alphabetic letters
#if (letter.isalnum ()):

#if (letter.islower ()):

¥if (letter.upper ()):

if (letter.isalpha ()):

value = ord (letter)
value = value + shift
=====> Choose the correct line to check for upper case

#if (letter.upper ()):
#if (letter.isalpha ())
#if (letter.islower ())
if (letter.isupper ()):

=====> Choose the correct line to check if the letter is
if (value > ord ('z2')):
#if (value >= ord ('Z"))
#if (value < chr ('Z2'"))
#if (value < ord ('Z')):
value = value = 26

=====> Choose the correct line to check if the letter i=s
$elif (value <= ord ('A')):

#elif (value > chr ('A')):

elif (value < ord ('A')):

#elif (value > ord ('A')):

value = value + 26

46 $ =====> Choose the correct line to check for lower case
47 elif (letter.lower ()):
48 #elif (letter.islower ()):
49 felif (letter.isupper ()):
50 felif (letter.isalpha ()):
51
52 ¥ =====> Choose the correct line to check if the letter ic
53 #if (value >= chr ('z")):
54 #if (value < ord ('z')):
55 if (value > ord ('z')):
56 #if (value <= chr ('z")):
57 value = value = 26
58
59 ¥ =====> Choose the correct line to check if the letter is
60 $elif (value < ord ('a')):
61 #elif (value < chr ('z')):
62 elif (value '= ord ('a')):
63 #elif (value == chr ('z')):
64 value = value + 26
65
66 # =====> Choose the correct line to set the variable newlLettel
67/ newLetter = ord (value)
68 fnewLetter = chr (value)
69 fnewLetter = ord (letter)
70 fnewlLetter = chr (letter)
71
| 72 # =====> Choose the correct line to create the encrypted strir
It 73 cipherText = newLetter + cipherText
74 frnewlLetter = cipherText + newlLetter
75 fnewletter = newletter + cipherText
76 fcipherText = cipherText + newlLetter
77
78 else:
79 # =====> Choose the correct line to create the encrypted strir
80 fcipherText = letter + cipherText
81 fcipherText = cipherText + letter
82 letter = cipherText + letter
83 fletter = letter + cipherText
84
85 print ("Plain text: ", plainText)
86 print("Cipher text: ", cipherText)
87

This example was awarded five marks. Although the individual characters are handled accurately by
the built-in string functions and the selections deal accurately with the boundary conditions of the
alphabet, the construction of the new ciphertext is not accurate.

Q03 — Complete the code

Solutions required completion of the given code lines and addition of new code lines. The logic for
the problem solution is provided in the comments.

Test data is given in the question paper so students can check if their solution functions correctly.
The majority of students submitted good responses.

The most frequently missed marks were those associated with the use of relational operators and
the use of literals rather than the constants provided.

Q03 Example 1

1 # -
2 # Constants
I
4 PURCHASE TYPE ITEM = 1
5 PURCHASE TYPE WEIGHT = 5
©
| 7 PRICE PER KILOGRAM = 3.45
4 PRICE PER ITEM = 1.23
If)A
i0 4 ----———————-—-—"-""—-———-"—————
11 4 Global variables
iz 4 -
13 weight = 0.0
14 count = 0
5 totalCost = 0.0
16
17 # =====> Create an integer variable named purchaseType and set it to 0
18 purchaseType = 0
19
20 4 -~-————————————-—-"—""——"——————
21 4 Main program
22 o e
23 purchaseType = int (input ("Enter a purchase type (1 or 5) ™))
24
25 # =====> Complete the line with the correct logical operator and the correct constant
26 if ((purchaseType !=PURCHASE TYPE ITEM)and(purchaseType !'= PURCHASE TYPE WEIGHT)) :
27 print ("Invalid purchase type")
28
29 # =====> Complete the line with the correct constant
30 elif (purchaseType == PURCHASE TYPE WEIGHT) :
31
32 ¥ =====> Complete the line to accept a real value for the weight in kilograms
33 weight = fleoat(input ("Enter weight in kilograms "))
34 if (weight <= 0):
35 print ("Invalid weight')
36 else:
37 # =====> Complete the line to calculate the total cost based on weight
38 totalCost = weight * PRICE_PER KILOGRAM
39 else:
40 count = int (input ("Enter count of items ™))
41 # =====> Complete the line to check for a 0 or negative count of items
42 if (count <= 0):
43 print ("Invalid number of items")
44 else:
45 totalCost = count * PRICE PER ITEM
46
47 # =====> Complete the line with the correct relational operator
48 if (totalCost >= 0.0):
49
50 # =====> Add a line to display an informative message and the total cost
51
52 print ("Your total cost is", totalCost)

This response was awarded eight marks. It demonstrates an understanding of data types, logical
operators, and the use of constants. It highlights the common errors with relational operators.

Q03 Example 2

i1 # - -
2 # Constants
3 # - -
4
5 PURCHASE _TYPE_ ITEM = 1
6 PURCHASE TYPE WEIGHT = 5
7
8 PRICE PER KILOGRAM = 3.45
9 PRICE PER ITEM = 1.23
10
11 4 ——— -
12 4 Global variables
13 4 --------—-——-———-—-—"—-———— -
14 weight = 0.0
L5 count = 0
16 totalCost = 0.0
17 # =====> Create an integer variable named purchaseType and set it to O
18 purchaseType = 0
19
20 # ——mmmmmmmm -
21 # Main program
22 # ———————— - -
23 purchaseType = int (input ("Enter a purchase type (1 or 5) "))
24
25 # =====> Complete the line with the correct logical operator and the correct constant
26 if ((purchaseType '= PRICE PER KILOGRAM) and (purchaseType !'= PURCHASE TYPE WEIGHT)) :
27 print ("Invalid purchase type")
28
29 # =====> Complete the line with the correct constant
30 elif (purchaseType == PURCHASE TYPE WEIGHT) :
31
32 # =====> Complete the line to accept a real value for the weight in kilograms
33 weight = int (input ("Enter weight in kilograms "))
34 if (weight <= 0):
35 print ("Invalid weight'™)
36 else:
37 # =====> Complete the line to calculate the total cost based on weight
38 totalCost = weight + PRICE PER KILOGRAM
39 else:
40 count = int (input ("Enter count of items "))
41 # =====> Complete the line to check for a 0 or negative count of items
42 if (count <= 0):
43 print ("Invalid number of items")
44 else:
45 totalCost = count * PRICE_PER_ITEM
46
47 # =====> Complete the line with the correct relational operator
48 if (totalCost == 0.0):
49
50 # =====> Add a line to display an informative message and the total cost
I 51 print ("you havn't purchased anything")

This response was awarded four marks. It demonstrates the use of logical operators, but does not
deal with all data types and relational tests accurately.

Q04 — Implement a flowchart
In this question students are given a description of a scenario, a flowchart algorithm that solves the
problem in the scenario, and test data.

The logic to solve the problem is already designed for the student and is presented as a flowchart in
the question paper. This is the first question in the paper that uses the Functionality Levels-based
Mark Scheme.

Where students followed the logic set out in the flowchart to guide them in writing the code, very
good marks were awarded.

The majority of responses correctly constructed the calculations to determine the partial packs of
crisps, the number of rolls, and the grams of cheese required. Less successful was the logic to
convert these to numbers of whole packs. Using math.ceil(), from the provided library, is the
preferred method for conversion. Students were creative and demonstrated many different types of
approaches. However, while many were awarded partial marks, not all approaches deal with the
edge conditions accurately.

The question paper states to use the library and constants provided, use informative messages,
comments, white space and layout. Where requirements are explicitly stated, students should
attempt to meet them.

Q04 Example 1

=
O WO -JdJo Uk WP

[Y
s W N e

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

31
32

33
34

37
38

39
40

41
42

43
44

47

CHEESE PER ADULT = 40 # Grams
CHEESE PER CHILD = 30 # Grams
MIN CHEESE = 500 ¥ 500 grams in a pack

ROLLS PER ADULT Count
ROLLS_PER CHILD Count
MIN ROLLS = 24 # Count of rolls in a pack

nn
o P
@]

]

CRISPS PER ADULT = 0.75
CRISPS PER CHILD = 0.33

Of a bag
Of a bag

=====> Write your code here
print ("Please enter the number of adults:") #asking for number of
adults

Adults = int(input()) #recieving number of adults as inputted and
assigning them a variable

print ("Please enter the number of children:") #asking for number of
children

Children = int (input()) # recieving number of children as inputted
and assigning them a wvariable

AdultCrisps = Adults * 0.75 # calculating the total number of
partial crisps needed for adults

ChildCrisps = Children * 0.33 § calculating the total number of
partial crisps needed for children

TotalCrisps = AdultCrisps + ChildCrisps # adding the total number of
partial crisps for both adults and children

print (f"{TotalCrisps} partial bags of crisps required.") #
displaying how many partial bags of crisps are required

print (£"Order {int(TotalCrisps)} bags of crisps.") # using the int
function to remove the decimal and only return the actual number of
bags of crisps that need to be ordered, as crisps can only be
ordered in whole bags

48 AdultCheese = Adults * 40 # calculating the total grams of cheese
needed for the adults

50 ChildCheese = Children * 30 # calculating the total grams of cheese
needed for the children

52 TotalCheese = AdultCheese + ChildCheese { adding together the total
grams of cheese needed for both children and adults to find the
total amount of packs required

3
54 if TotalCheese <= 500: # checking if the total amount of cheese 1is
within 500 grams or one pack of cheese

55

56 print ("Order one pack of cheese.") # ordering one pack of cheese
as the required total is within the amount provided for by a
single pack of cheese

57

58 else: 4# if the total amount of cheese exceeds 500 grams or one pack
of cheese, the following events will occur

59

60 ExtraCheese = TotalCheese // 500 # dividing the total cheese by
500 to identify how many whole packs of cheese are needed and
assigning that value a variable

61

62 print (f"Order {ExtraCheese} packs of cheese.") # using the
variable assigned in the previous line to display how many packs
of cheese are needed

63

64 AdultRolls = Adults * 1.5 # calculating the total amount of rolls
needed for the adults

66 ChildRolls = Children * 0.5 # calculating the total amount of rolls
needed for the children

68 TotalRolls = AdultRolls + ChildRolls # calculating the total amount
of rolls needed for everyone

70 if TotalRolls <= 24: §# checking if the total amount of rolls exceeds
24 or one pack of rolls

71

72 print ("Order one pack of rolls.") # displaying an instruction
which states that one pack of rolls should be ordered as it will
suffice to feed everyone within a single pack of rolls

73

74 else: 4 if the total amount of rolls exceeds 24 or one pack of rolls
the following events will occur

75

76 ExtraRolls = TotalRolls // 24 # dividing the total amount of
rolls by 24 to identify how many whole packs of rolls are needed
and assigning that wvalue a variable

77

78 print (f"Order {ExtraRolls} packs of rolls.") # using the
variable assigned in the previous line to display how many packs
of rolls are needed

79

This response was awarded 11 of the 15 available marks.

It is a good example of code that follows the logic of the flowchart. It has not used the provided
constants or library.

It has, however, used excessive white space and comments. As a result, the code is very difficult to
read. Students are reminded that examiners are knowledgeable 3™ parties, who are assumed to be
able to understand Python code without line-by-line commenting. Commenting blocks of logic is
more appropriate.

Q04 Example 2

4 import math
5
6 e
7 # Constants
e
9 CHEESE PER ADULT = 40 # Grams

10 CHEESE PER CHILD = 30 # Grams

11 MIN CHEESE = 500 # 500 grams in a pack

12

13 ROLLS PER ADULT = 1.5 # Count

14 ROLLS PER CHILD = 0.5 # Count

#

15 MIN ROLLS = 24 Count of rolls in a pack

17 CRISPS PER ADULT = 0.75 # Of a bag

18 CRISPS PER CHILD = 0.33 # Of a bag

19 -

20 ¥ -

21 4 Global variables

22 A

23

24 # =====> Write your code here

25 adults = int(input("how many adults will be attending the community event: "))
26

27 children = int (input ("how many children will be attending the community event: "))
28

29 partialCrisps = (adults*CRISPS PER ADULT) + (children*CRISPS PER CHILD)

30 print("the amount of partial Crisps Bags needed is : ", partialCrisps)

31

32 wholeCrisps = int(partialCrisps) +1

33 print("the whole bags of crips needed is", wholeCrisps)

36 gramsOfCheese = (adults*CHEESE PER ADULT)+(children*CHEESE PER CHILD)

38 if gramsOfCheese <= MIN CHEESE:

39 print("order one pack of cheese')

40 if gramsOfCheese >= MIN CHEESE:

41 gramsOfCheese = int?gramsofcheeSe/MINicHEESE)+1

a2 print("the amount of packs of cheese you need to order is :", gramsOfCheese)
43

L
45

46 partialRolls = (adults*ROLLS PER ADULT)+(children*ROLLS PER CHILD)

47 print("the partial number of rolls required is: ", partIalells)

48

49 numberRolls = int(partialRolls)+1

50

51 if numberRolls <= MIN ROLLS:

52 print("order one pack of rolls")

53 if numberRolls >= MIN ROLLS:

54 numberRolls = int(numberRolls/MINiROLLS)+l

55 print("the amount of packs of rolls you need to order is :", numberRolls)
56

57 # Main program

58 ¢ -

59

60 # =====> Write your code here

61

This response was awarded 10 of the 15 marks. It is a good example of calculating the decimal
values for the ingredients. There is an attempt to convert to whole numbers, which was awarded a
mark. However, the outputs are not completely accurate.

Q05 — Complete the Code

In this question, students are required to create a programmed solution to a problem. Students are
provided with the requirements of the problem in the question paper. This is followed up in the
student code file with partially complete code representing the logic of a programmed solution.

This question requires knowledge and understanding of using subprograms effectively to decompose
a solution.

The use of random.choice(pTable) to find a random pasta shape was not awarded MP 5.4.
Instructions in the question paper state that a random number is to be generated and used as an
index into the pasta table. The marks for functionality were not affected.

Examiners saw these strengths:

e Returning a value from getChoice()
e C(Calling showShapes() to display the pasta table
e Appending a shape to the pasta table

Examiners saw these recurring errors:

e Ignoring input parameters (pTable) to subprograms, using the global variable instead

e Upper bound on random number not controlled by length of the pasta table or off-by-one
errors

e No loop in main program

Q05 Example 1

1

X U s WN

SRR R WWWWWWWWWwWhNNNONMNNMNNNNMNNNMNNMNNRERRPRPRRRERRERRS
~ ok, WNPOWOWODJOOUERE WNRPOOWJOU R WNRPOWOUTITO R WNRE OW

1=
[oe]

pastaShapes = ["Bigoli"™, "Strozzapreti", "Trofie", "Gigli", "Chitarra",

"Penne", "Orecchiette", "Tagliatelle",
"Fusilli™]

shape = ""
choice = 0

Subprograms

__
Get a menu item from the user

def getChoice ():

print ("1 - get a shape™)
print ("2 - add a shape")
print ("3 - show the shapes")
print ("4 - exit program")

menuChoice = int (input ("Enter your menu choice:

=====> Write your code here
return menuChoice

Display all the shapes

def showShapes (pTable):

for pasta in pTable:
print (pasta)

Get a random shape

def getShape (pTable):
=====> Write your code here
index =random.randint (0, len(pTable)=-1)
return (pTable[index])

"Chonchiglie",

vl))

Add a shape

def addShape (pTable):
=====> Write your code here
newShape = input("Enter the name of the new pasta shape: ")
pTable.append (newShape)

e WP O

o
=
=
W
-
=]
e}
P
o]
(o]
=
W
=]

]
+=

RGN NG NGNS NSNS WS
o 9 o

choice = getChoice ()

60 # =====> Write your code here
61 while (choice '= EXIT):
62 if choice == GET:
63 print ("The random pasta shape is:",getShape (pastaShapes))
64 elif choice == ADD
65 addsShape (pastaShapes)
66 elif choice == SHOW:
showShapes (pastaShapes)
else:

print ("ERROR: You must select a menu option")
choice = getChoice ()

This response was awarded the maximum of 15 marks. It demonstrates good use of subprograms to
decompose a problem. In addition, the program demonstrates good design decisions. It accurately
uses the parameters passed into each subprogram. The random number generation makes a
generalised solution that works with any number of shapes in the pasta table. There are no
additional global variables used, thereby reducing the probability of errors and making debugging
easier.

QOS5 Example 2

1

D s WN

pastaShapes = ["Bigoli", "Strozzapreti", "Trofie", "Gigli", "Chitarra",
"Penne", "Orecchiette", "Tagliatelle", "Chonchiglie",
"Fusilli™]

shape = ""
choice = 0

Subprograms

Get a menu item from the user
def getChoice ():
=====> Write your code here
print ("1 - get a shape")
print ("2 - add a shape")
print ("3 - show the shapes")
print ("4 - exit program'")
choice = int (input("Enter menu number: "))

=====> Write your code here
return choice

Display all the shapes

def showShapes (pTable):

for pasta in pTable:
print (pasta)

Get a random shape

def getShape (pTable):
=====> Write your code here
shape = pastaShapes[random.randint (0, (len(pTable)=-1))1
return shape

Add a shape

def addShape (pTable):
=====> Write your code here
shape = input("Enter the name of the shape: ")
pTable.append (shape)

J o

(SIS NS NGy
]
==

8 # Main program

9 4 -
60

61 choice = getChoice ()

62 #f =====> Write your code here

63 pTable = pastaShapes

64 while choice '= EXIT:

65 if choice == GET:

shape = getShape (pTable)
print ("The shape is",shape)
elif choice == ADD:
) addsShape (pTable)
70 elif choice == SHOW:
showShapes (pTable)
72 elif choice != GET and ADD and SHOW and EXIT:
73 print ("ERROR! The option you selected is not in the menu.")
choice = getChoice ()

This response was awarded 13 marks. It demonstrates a good understanding of using subprograms
to decompose a problem. It is inconsistent in the use of passed in parameters. The conditional test
on line 72 does not function as the author may believe it does. The outputs remain accurate as a
side-effect of the way the if/elif choices are arranged.

Q05 Example 3
1

2 # Import libraries
3 $F - ——
4 import random
5
s +$+---——————-----—--—----——-—
7 # Constants
8 $ -
9 GET = 1
10 ADD = 2
11 SHOW = 3
12 EXIT = 4
13
14 e
15 # Global variables
16 A
17 pastaShapes = ["Bigoli", "Strozzapreti", "Trofie", "Gigli", "Chitarra',
18 "Penne", "Orecchiette", "Tagliatelle", "Chonchiglie",
19 "Fusilli"]
20
21 shape = ""
22 choice = 0
23
24 $ -
25 # Subprograms
R
27 # Get a menu item from the user
28 def getChoice ():
29 # =====> Write your cocde here
30
31 print ("1 - get a shape")
32 print ("2 - add a shape")
33 print ("3 - show the shapes")
34 print ("4 - exit program™)
35
36 # =====> Write your code here
37 answer = int (input("please enter your choice from the menu: "))
fuser inputs choice
38 return (answer)
39

40 # Display all the shapes
41 def showShapes (pTable):

42 for pasta in pTable: #iterating through table
43 print (pasta)
44

45 # Get a random shape
46 def getShape (pTable):

47 # =====> Write your code here

48 index = random.randint (0, 9) #picking a random number
49 shape = pTable[index] #finding the shape with that index
50 return (shape)

51

52 # Add a shape

53 def addShape (pTable):

54 # =====> Write your code here

55 shape = input ("enter the name of the shape of pasta that you would

like to add to the list") #allowing user to enter shape

56 pTable.append (shape) #adding shape to list

57

R T

59 # Main program

c0 # ---—-—"—-"-"—---"-—-"---"--------

61

62 choice = getChoice ()

63 # =====> Write your code here

64

65 while choice != EXIT: #loop to continue choice

66

67 if choice == GET:

68 result = getShape (pastaShapes) f#calling subprogram with
parameter

69 print (result)

70 choice = getChoice ()

71

72 elif choice == ADD:

73 addShape (pastaShapes) #calling subprogram with parameter
choice = getChoice ()

elif choice == SHOW:

showShapes (pastaShapes) #calling subprogram with parameter

78 choice = getChoice ()

79

80 else:

81 print ("that input is not wvalid") #telling user that input is
invalid

82 choice = getChoice ()

83

This response was awarded 11 marks. It also demonstrates a good understanding of using
subprograms to decompose a problem. It has consistently used the parameters passed into the
subprograms. However, it is not a generalised solution, as it will not work for any number of items
in the pasta table. There is a duplication of code in the main loop, as only a single call to getChoice()
is required, regardless of the menu item chosen.

QO6 — Files and strings

In this question, students are required to create a programmed solution to a problem. There is very
little scaffolding provided in this question.

This question requires knowledge and understanding of reading lines from a file, manipulating
strings and numbers, and storing records in a table.

Students are asked to read in data from a comma-separated value text file and break the line into
separate fields. String fields are indexed, integer fields are used in arithmetic, and then they are
recombined to make a key. The new key and original record are added to a table and the table is
displayed.

There was a range of creative solutions which demonstrated the main requirements of the problem.
Some solutions demonstrated decomposition and abstraction by using subprograms.

Examiners saw these strengths:

e QOpening and closing files

e Processing every line from the file

e Removing line feed characters

e Breaking the line from the file into separate fields
e Appending a record to a table

Examiners saw these recurring errors:

e Inadvertent conversions to tuples, when building the final record

e Incorrect extraction (index, slice) of characters from strings

e Attempts at using temporary data structures (copies) or traversing records/fields multiple
times

e Inconsistent code layout, resulting in nesting of the supplied subprogram in main program
code

Q06 Example 1

1 $f -
2 # Global wvariables

3 $y - ———
4 cowTable = []

5 cowDetails = [] #Store the cow details from the text file in this 2

dimensional list

(o)

]
=

=====> Jrite your code here

@]

(el

#Open Cow.txt and store the cow detagils in a list

filel = open("Cows.txt","r")
for line in filel:
line = line.strip('\n")
cowDetails.append(line.split (', "))
filel.close()

o N WP O

[o0] J
+=
w
o
o}
T
R
o}
Q
[
)
3
wn

o]
=
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

def showTable (pTable):
for cow in pTable:
print (cow)
create the key for each cow and store the cow details and key as a
record in the cowTable list
def createKey(pTable, dTable):
for details in dTable:
name,breed,tag = details[0], details[1], details[2]
breedDetails = breed[0:2]
tagDetails = str(int(tag)//100)
nameDetails = name[0:2]

S N e e e e e
WN o wa

oy U

~1

o]

> WO

key = breedDetails+tagDetails+nameDetails

pTable.append([key, tag, name, breed])

~]

o ™
=+ =
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

=====> Write your code here
createKey (cowTable, cowDetails)

showTable (cowTable)

R W W W W W W W WWWNNNDNDNDN
: S U WP O

w N = O &

This example was awarded 12 marks. It demonstrates an effective way to open afile, read lines
from a file, strip off the line feed from each line, and close a file. The strings are split apart,
arithmetic is accurate, and the key has been formed using type conversions. There is an effective
use of a subprogram. However, the design of the solution has introduced the need for an additional
data structure to hold the contents of the file. Each line of the file can be processed one at a time,
without the need for duplicate storage. The layout of the code has nested the subprogram
definitions inside the main code. This should be avoided to better demonstrate an understanding of
scope.

Q06 Example 2

i 4 -
2 # Global variables

3 -
4 cowTable = []

5

6 # =====> Write your code here

7

5 $#-------—------------—-—--————
9 # Subprograms
10 # ———————
11 def showTable (pTable):
12 for cow in pTable:
13 print (cow)
14

5 ${-------—————-----""-"-""\"""\\\-"\ -\« —\(—(—(—
16 # Main program
17 e
18 # =====> Write your code here
19

20 #open the file in read mode

21 theFile = open("Cows.txt","r")

22

23 #fitereation for loop, reads each line and creates a lists with the data
separated, stripped and split

24 for line in theFile:

5 line = line.strip ("\n'")

26 datas = line.split (",")

27 # making the tag number an integer

28 tag = int (datas [2])

29

30 fkey with the first 2 letters of the breed, the tag number divided
| by 100, the name
I 31 key = (datas[1]1(1,3), tag/l100 , datas [0])

32

33 record = key , datas [2], datas [0], datas [1]

34 cowTable.append (record)

35
36 showTable (cowTable)
37

This response was awarded nine marks. It demonstrates opening a file and processing each line in
the file, one line at a time. It uses both strip() and split() appropriately. Indexing a string and using
integer division are not accurately implemented. There is no matching close() for the file open().
While the solution does translate, it generates runtime errors on execution.

Q06 Example 3

16
17
18
19
20
21
22
23
24

[=
=

26
277
28
29
30
31
32
33
34
35

36

;g n

oy U W

This response was awarded seven marks. It demonstrates good handling of resources by using both
open() and close() for the file. The character parts of the key are handled accurately. Each record in

b
Global variables

F mm
cowTable = []

=====> Write your code here
keyPartOne = ""

keyPartTwo = ""

keyPartThree = ""

cowName = ""

cowBreed "

cowTag
cowKey
pTable = ""

0
mr

def showTable (pTable):
for cow in pTable:
print (cow)

Main program

=====> Write your code here
cowFile = open("Cows.txt", "r'")
fiterates through each cow - to make their key
for cow in cowFile:
print (cow)
cow.split ()
cow.strip()
cowBreed = cow[1]

keyPartOne = cowBreed[0:4]

cowTag = cow[2]
keyPartTwo = cowTag

cowName = cowl[0]
keyPartThree = cowName[0:2]

#create the key
cowKey = keyPartOne + keyPartTwo + keyPartThree

#create record
cowRecord = (cowKey , cowTag , cowName , cowBreed)
cowTable.append (cowRecord)

fcalls the subprogram to display the contents of the table
pTable = cowTable
print (showTable (pTable))

cowFile.close ()

the table is a tuple, rather than a list.

Summary
Students should:

e Follow the instructions in the paper and do not rewrite the supplied code

e Remove all the syntax errors from code so that it will translate

e Execute and test code with the data supplied in the question

e Consider the design of the overall solution, not just the single lines of code

e Use effective, but not excessive, commenting and white space to make the program logic
clear

