

Examiners’ Report

Principal Examiner Feedback

Summer 2024

Pearson Edexcel GCSE In

Computer Science (1CP2/02)

Paper 2: Application of Computational

Thinking

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK’s largest awarding body.

We provide a wide range of qualifications including academic, vocational, occupational and

specific programmes for employers. For further information visit our qualifications websites

at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using

the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world’s leading learning company. Our aim is to help everyone

progress in their lives through education. We believe in every kind of learning, for all kinds

of people, wherever they are in the world. We’ve been involved in education for over 150

years, and by working across 70 countries, in 100 languages, we have built an international

reputation for our commitment to high standards and raising achievement through

innovation in education. Find out more about how we can help you and your students at:

www.pearson.com/uk

Summer 2024

Publications Code 1CP2_02_2406_ER

All the material in this publication is copyright

© Pearson Education Ltd 2024

http://www.edexcel.com/
http://www.btec.co.uk/
http://www.edexcel.com/contactus
http://www.pearson.com/uk

Introduction
This is the third examination of the Edexcel GCSE Computer Science (9-1), with the paper two

onscreen exam. The programming language required is Python 3.

Students are supplied with a question paper, a programming language subset document, and a code

file for each question. Students are required to amend the code files and save their work, using a

different file name.

Centres compress the code file responses for each student. The compressed files are uploaded to

Edexcel for external assessment, via the Learner Work Transfer platform.

Centre submissions
The ICE document for this series set out the format in which students’ completed code files were to

be submitted. The majority of centres were able to follow the instructions accurately, ensuring that

a single zipped file of the COMPLETED_CODE folder was provided for each student. The submissions

were correctly identified with the centre and student number.

General

Range of marks
A full range of marks was awarded for Paper 2. Examiners did see some submissions which achieved

the full 75 marks available.

Attempting all questions
In common with previous years, there were a number of scripts where students did not attempt Q05

and Q06, thereby missing an opportunity to access some marks. There are partial marks that could

be awarded in each question. Students are reminded to attempt all the questions on the paper.

Readability
It is not necessary to comment every line of code in a solution. In common with previous years,

examiners saw some responses where the number of comments exceeded the number of code lines.

Comments are to help understand the logic, so should be placed, more helpfully, at the start of

blocks of code. Excessive commenting makes the response difficult to read.

White space also can help with readability, but there is no requirement to double space code. Use

white space between blocks of logic. Single spacing is appropriate for code.

Execute and test the code
Marks are awarded in some questions, regardless if the code interprets and executes. However, in

others, marks are awarded for interpretation and functionality. Students should always attempt to

execute the code. The IDE will highlight syntax errors in the code editor or identify them with a

runtime error during execution. Students can fix syntax and indentation errors this way.

In Q02, where students chose correct lines of code, the code should be executed with the test data

given in the question paper. Execution would quickly identify that some incorrect lines were chosen.

Q01 – Fix the errors
This type of question has appeared in all previous papers.

Solutions required students to fix syntax errors, runtime errors, and logic errors. The resulting

program does not have to translate nor execute.

The majority of students submitted good responses.

The most frequently lost marks were the corrections of the logic errors (MP1.8, MP1.9, and MP1.10).

Q01 Example 1

This example was awarded eight marks. This response demonstrates an understanding of how to fix

syntax errors and runtime errors. However, it has not correctly amended the code for all the logic

errors.

Q01 Example 2

This example was awarded six marks. This response demonstrates an understanding of how to fix

syntax errors. The runtime error on line 22 was corrected, but the correction is not appropriate in

the logic of the problem.

Q02 – Choose the lines
Solutions required selecting the correct line of code from four options.

A small number of responses deleted the lines of code that were not required. These were awarded

appropriately, although they did not follow the instructions given on the paper.

Once, all the selections are made, students can execute the code to find and amend any lines where

the wrong option has been chosen.

The majority of students submitted good responses.

The most frequently missed marks were those associated with the boundary conditions of the

alphabet. The selections often included the boundary conditions (A, a, Z, z), rather than excluding

them.

Q02 Example 1

This example was awarded eight marks. It demonstrates good use of the built-in string handling

functions, but does include the boundary conditions on the alphabet.

Q02 Example 2

This example was awarded five marks. Although the individual characters are handled accurately by

the built-in string functions and the selections deal accurately with the boundary conditions of the

alphabet, the construction of the new ciphertext is not accurate.

Q03 – Complete the code
Solutions required completion of the given code lines and addition of new code lines. The logic for

the problem solution is provided in the comments.

Test data is given in the question paper so students can check if their solution functions correctly.

The majority of students submitted good responses.

The most frequently missed marks were those associated with the use of relational operators and

the use of literals rather than the constants provided.

Q03 Example 1

This response was awarded eight marks. It demonstrates an understanding of data types, logical

operators, and the use of constants. It highlights the common errors with relational operators.

Q03 Example 2

This response was awarded four marks. It demonstrates the use of logical operators, but does not

deal with all data types and relational tests accurately.

Q04 – Implement a flowchart
In this question students are given a description of a scenario, a flowchart algorithm that solves the

problem in the scenario, and test data.

The logic to solve the problem is already designed for the student and is presented as a flowchart in

the question paper. This is the first question in the paper that uses the Functionality Levels-based

Mark Scheme.

Where students followed the logic set out in the flowchart to guide them in writing the code, very

good marks were awarded.

The majority of responses correctly constructed the calculations to determine the partial packs of

crisps, the number of rolls, and the grams of cheese required. Less successful was the logic to

convert these to numbers of whole packs. Using math.ceil(), from the provided library, is the

preferred method for conversion. Students were creative and demonstrated many different types of

approaches. However, while many were awarded partial marks, not all approaches deal with the

edge conditions accurately.

The question paper states to use the library and constants provided, use informative messages,

comments, white space and layout. Where requirements are explicitly stated, students should

attempt to meet them.

Q04 Example 1

This response was awarded 11 of the 15 available marks.

It is a good example of code that follows the logic of the flowchart. It has not used the provided

constants or library.

It has, however, used excessive white space and comments. As a result, the code is very difficult to

read. Students are reminded that examiners are knowledgeable 3rd parties, who are assumed to be

able to understand Python code without line-by-line commenting. Commenting blocks of logic is

more appropriate.

Q04 Example 2

This response was awarded 10 of the 15 marks. It is a good example of calculating the decimal

values for the ingredients. There is an attempt to convert to whole numbers, which was awarded a

mark. However, the outputs are not completely accurate.

Q05 – Complete the Code
In this question, students are required to create a programmed solution to a problem. Students are

provided with the requirements of the problem in the question paper. This is followed up in the

student code file with partially complete code representing the logic of a programmed solution.

This question requires knowledge and understanding of using subprograms effectively to decompose

a solution.

The use of random.choice(pTable) to find a random pasta shape was not awarded MP 5.4.

Instructions in the question paper state that a random number is to be generated and used as an

index into the pasta table. The marks for functionality were not affected.

Examiners saw these strengths:

• Returning a value from getChoice()

• Calling showShapes() to display the pasta table

• Appending a shape to the pasta table

Examiners saw these recurring errors:

• Ignoring input parameters (pTable) to subprograms, using the global variable instead

• Upper bound on random number not controlled by length of the pasta table or off-by-one

errors

• No loop in main program

Q05 Example 1

This response was awarded the maximum of 15 marks. It demonstrates good use of subprograms to

decompose a problem. In addition, the program demonstrates good design decisions. It accurately

uses the parameters passed into each subprogram. The random number generation makes a

generalised solution that works with any number of shapes in the pasta table. There are no

additional global variables used, thereby reducing the probability of errors and making debugging

easier.

Q05 Example 2

This response was awarded 13 marks. It demonstrates a good understanding of using subprograms

to decompose a problem. It is inconsistent in the use of passed in parameters. The conditional test

on line 72 does not function as the author may believe it does. The outputs remain accurate as a

side-effect of the way the if/elif choices are arranged.

Q05 Example 3

This response was awarded 11 marks. It also demonstrates a good understanding of using

subprograms to decompose a problem. It has consistently used the parameters passed into the

subprograms. However, it is not a generalised solution, as it will not work for any number of items

in the pasta table. There is a duplication of code in the main loop, as only a single call to getChoice()

is required, regardless of the menu item chosen.

Q06 – Files and strings
In this question, students are required to create a programmed solution to a problem. There is very

little scaffolding provided in this question.

This question requires knowledge and understanding of reading lines from a file, manipulating

strings and numbers, and storing records in a table.

Students are asked to read in data from a comma-separated value text file and break the line into

separate fields. String fields are indexed, integer fields are used in arithmetic, and then they are

recombined to make a key. The new key and original record are added to a table and the table is

displayed.

There was a range of creative solutions which demonstrated the main requirements of the problem.

Some solutions demonstrated decomposition and abstraction by using subprograms.

Examiners saw these strengths:

• Opening and closing files

• Processing every line from the file

• Removing line feed characters

• Breaking the line from the file into separate fields

• Appending a record to a table

Examiners saw these recurring errors:

• Inadvertent conversions to tuples, when building the final record

• Incorrect extraction (index, slice) of characters from strings

• Attempts at using temporary data structures (copies) or traversing records/fields multiple

times

• Inconsistent code layout, resulting in nesting of the supplied subprogram in main program

code

Q06 Example 1

This example was awarded 12 marks. It demonstrates an effective way to open a file, read lines

from a file, strip off the line feed from each line, and close a file. The strings are split apart,

arithmetic is accurate, and the key has been formed using type conversions. There is an effective

use of a subprogram. However, the design of the solution has introduced the need for an additional

data structure to hold the contents of the file. Each line of the file can be processed one at a time,

without the need for duplicate storage. The layout of the code has nested the subprogram

definitions inside the main code. This should be avoided to better demonstrate an understanding of

scope.

Q06 Example 2

This response was awarded nine marks. It demonstrates opening a file and processing each line in

the file, one line at a time. It uses both strip() and split() appropriately. Indexing a string and using

integer division are not accurately implemented. There is no matching close() for the file open().

While the solution does translate, it generates runtime errors on execution.

Q06 Example 3

This response was awarded seven marks. It demonstrates good handling of resources by using both

open() and close() for the file. The character parts of the key are handled accurately. Each record in

the table is a tuple, rather than a list.

Summary
Students should:

• Follow the instructions in the paper and do not rewrite the supplied code

• Remove all the syntax errors from code so that it will translate

• Execute and test code with the data supplied in the question

• Consider the design of the overall solution, not just the single lines of code

• Use effective, but not excessive, commenting and white space to make the program logic

clear

