# The Young Modulus TOPIC QUESTIONS 

| Level | A Level |
| :--- | :--- |
| Subject | Physics |
| Exam Board | AQA |
| Paper Type | Multiple Choice |

1. Which line, $\mathbf{A}$ to $\mathbf{D}$, in the table correctly describes the trajectory of charged particles which enterseparately, at right angles, a uniform electric field, and a uniform magnetic field?

|  | uniform electric field | uniform magnetic field |
| :--- | :--- | :--- |
| A | parabolic | circular |
| B | circular | parabolic |
| C | circular | circular |
| D | parabolic | parabolic |


2. The graph shows how the force acting on a body changes with time.


The body has a mass of 0.25 kg and is initially at rest. What is the speed of the body after 40 sassuming no other forces are acting?

A $200 \mathrm{~ms}^{-1}$
B $400 \mathrm{~ms}^{-1}$
C $800 \mathrm{~ms}^{-1}$
D $\quad 1600 \mathrm{~ms}$
3. A stationary unstable nucleus of mass $M$ emits an a particle of mass $m$ with kinetic energy $E$.
parent nucleus

before
daughter nucleus

after

What is the speed of recoil of the daughter nucleus?
A $\frac{\sqrt{2 m E}}{(M-m)}$
B $\frac{\sqrt{2 m E}}{M}$
C $\frac{(M-m)}{\sqrt{2 m E}}$
D $\frac{2 m E}{(M-m)^{2}}$


## EXAM PAPERS PRACTICE

4. Two ice skaters, initially at rest and in contact, push apart from each other.

Which line, A to D, in the table states correctly the change in the total momentum and the totalkinetic energy of the two skaters?

|  | total momentum | total kinetic <br> energy |
| :--- | :--- | :--- |
| A | unchanged | increases |
| B | unchanged | unchanged |
| C | increases | increases |
| D | increases | unchanged |

5. A ball of mass 2.0 kg , initially at rest, is acted on by a force $F$ which varies with time $t$ asshown by the graph.


What is the velocity of the ball after 8.0 s?
A $20 \mathrm{~ms}^{-1}$
B $\quad 40 \mathrm{~ms}^{-1}$

C $80 \mathrm{~ms}^{-1}$
D $\quad 160 \mathrm{~ms}^{-1}$
6. A ballbearing $X$ of mass $2 m$ is projected vertically upwards with speed $u$. A ballbearing $Y$ of mass $m$ is projected at $30^{\circ}$ to the horizontal with speed $2 u$ at the same time. Air resistance is negligible. Which of the following statements is correct?

A The horizontal component of Y's velocity is $u$.
B The maximum height reached by Y is half that reached by X
C X and Y reach the ground at the same time.
D X reaches the ground first.
7. What is the relationship between the distance $y$ travelled by an object falling freely from rest andthe time $X$ the object has been falling?

A $y$ is proportional to $x^{2}$
B $y$ is proportional to $v x$
C $y$ is proportional to $\frac{1}{x}$

D $y$ is proportional to $\frac{1}{x^{2}}$
8. A car exerts a driving force of 500 N when travelling at a constant speed of $72 \mathrm{~km} \mathrm{~h}^{-1}$ on a leveltrack. What is the work done in 5 minutes?

A $3.0 \times 10^{6} \mathrm{~J}$
B $2.0 \times 10^{6} \mathrm{~J}$
C $2.0 \times 10^{5} \mathrm{~J}$
D $1.1 \times 10^{5} \mathrm{~J}$
9. Two masses hang at rest from a spring, as shown in the diagram. The string separating the massesis burned through.


Which of the following gives the accelerations of the two masses as the string breaks? acceleration of free fall $=g$

|  | acceleration of <br> 1 kg mass upwards <br> in $\mathrm{m} \mathrm{s}^{-2}$ | acceleration of <br> $2 \mathrm{~kg} \mathrm{mass}^{\mathrm{in}} \mathrm{m} \mathrm{s}^{-2}$ |
| :--- | :--- | :--- |
| A | $3 g$ | $1 g$ |
| B | $2 g$ | $2 g$ |
| C | $2 g$ | $1 g$ |
| D | $1 g$ | $1 g$ |

10. An object falls freely from rest. After falling a distance $d$ its velocity is $v$. What is its velocity after ithas fallen a distance $2 d$ ?

A $2 v$

B $4 v$
C $2 v^{2}$

D V 2 v
11. The force on a sample of a material is gradually increased and then decreased. The graph of forceagainst extension is shown in the diagram.


The increase in thermal energy in the sample is represented by area
A R
B $\quad P+Q$
c $P+Q+R$

D $\quad P+Q-R$
12. The diagram shows a strobe photograph of a mark on a trolley $\mathbf{X}$, moving from right to left, in collision with another trolley Y which had no mark
on it.After the collision both trolleys are in motion
together.


Which one of the following is consistent with the photograph?

A Trolley $\mathbf{Y}$ has the same mass as trolley $\mathbf{X}$ and was initially stationary

B Trolley $\mathbf{Y}$ had a smaller mass than $\mathbf{X}$ and was moving from right to left
C Trolley $\mathbf{Y}$ had the same mass and was initially moving left to right at the same speed as trolley $\mathbf{X}$

D Trolley $\mathbf{Y}$ had the same mass and was initially moving left to right at a higher speed than trolley X
13. A perfectly elastic rubber ball falls vertically from rest and rebounds from the floor. Which one of the following velocity-time, $v-t$, graphs best represents the motion from the moment of releaseto the top of the first rebound?

A

B

C

14. The diagram shows the graph of force on a car against time when the car of mass 500 kg crashes


Which one of the following statements is correct?
A The area under the graph is equal to the initial momentum of the car
B Momentum is not conserved in the collision
C Kinetic energy is conserved in the collision
D The average force exerted on the car is $10 \times 10^{4} \mathrm{~N}$
15. A stone is projected horizontally by a catapult consisting of two rubber cords. The cords, which obey Hooke's law, are stretched and released. When each cord is extended by $X$,
the stone is projected with a speed $V$. Assuming that all the strain energy in the rubber is transferred to thestone, what is the speed of the stone when each cord is extended by $2 X$ ?

A $\quad v$
B $\sqrt{2 v}$

C $2 v$
D $4 V$
16. The graph shows the variation with time, $t$, of the force, $F$, acting on a body.


What physical quantity does the area X represent?
A the displacement of the body
B the acceleration of the body
C the change in momentum of the body
D the change in kinetic energy of the body
17. Water of density $1000 \mathrm{~kg} \mathrm{~m}^{-3}$ flows out of a garden hose of cross-sectional area $7.2 \times 10^{-4}$ $\mathrm{m}^{2}$ at a rate of $2.0 \times 10^{-4} \mathrm{~m}^{3}$ per second. How much momentum is carried by the water leaving the hose per second?

A $\quad 5.6 \times 10^{-5} \mathrm{~N} \mathrm{~s}$
B $\quad 5.6 \times 10^{-2} \mathrm{~N} \mathrm{~s}$

C $\quad 0.20 \mathrm{Ns}$

D $\quad 0.72 \mathrm{Ns}$
18. Which row, $A$ to $D$, in the table correctly shows the quantities conserved in an inelastic collision?

|  | mass | momentum | kinetic <br> energy | total energy |
| :--- | :--- | :--- | :--- | :--- |
| A | conserved | not <br> conserved | conserved | conserved |
| B | not <br> conserved | conserved | conserved | not <br> conserved |
| C | conserved | conserved | conserved | conserved |
| D | conserved | conserved | not <br> conserved | conserved |

19. A 10 mF capacitor is charged to 10 V and then discharged completely through a small motor. During this process, the motor lifts a weight of mass 0.10 kg . If $10 \%$ of the energy stored in thecapacitor is used to lift the weight, through what approximate height will the weight be lifted?

A $\quad 0.05 \mathrm{~m}$
B $\quad 0.10 \mathrm{~m}$
C $\quad 0.50 \mathrm{~m}$
D 1.00 m
20.


A ball of mass $m$, which is fixed to the end of a light string of length $l$, is released from rest at $X$. It swings in a circular path, passing through the lowest point $Y$ at speed $v$. If the tension in the stringat Y is $T$, which one of the following equations represents a correct application of Newtonls lawsof motion to the ball at $Y$ ?

A $T=\frac{m v^{2}}{l}-m g$


B $\quad T-m g=\frac{m v^{2}}{l}$

C $m g-T=\frac{m v^{2}}{l}$

D $\quad T+\frac{m v^{2}}{l}=m g$

