

Boost your performance and confidence with these topic-based exam questions

Practice questions created by actual examiners and assessment experts

Detailed mark scheme

Suitable for all boards

Designed to test your ability and thoroughly prepare you

4.7 Further Probability Distributions

IB Maths - Revision Notes

AA HL

4.7.1 Probability Density Function

Calculating Probabilities using PDF

A **continuous random variable** can take *any* value in an interval so is typically used when continuous quantities are involved (time, distance, weight, etc)

What is a probability density function (p.d.f.)?

- For a continuous random variable, a function can be used to model probabilities
 - This function is called a **probability density function** (p.d.f.), denoted by f(x)
- For f(x) to represent a p.d.f. the following conditions must apply
 - $f(x) \ge 0$ for **all** values of x
 - The area under the graph of y = f(x) must total 1
- In most problems, the **domain** of x is restricted to an interval, a ≤ X ≤ b say, with all values of x outside of the interval having f(x)=0

How do I find probabilities using a probability density function (p.d.f.)?

• The probability that the continuous random variable X lies in the interval $a \le X \le b$, where X has the probability density function f(x), is given by

$$P(a \le X \le b) = \int_{a}^{b} f(x) dx$$

- P(a ≤ X ≤ b) = P(a < X < b)</p>
 - For any continuous random variable (including the normal distribution) P(X = n) = 0
 - One way to think of this is that a = b in the integral above

For linear functions it can be easier to find the probability using the area of geometric shapes

Copyright Rectangles: A = bh

© 2024 E Triangles A=1/2(bh)

• Trapezoids: $A = \frac{1}{2}(a+b)h$

How do I determine whether a function is a pdf?

- Some questions may ask for justification of the use of a given function for a probability density function
 - In such cases check that the function meets the two conditions
 - $f(x) \ge 0$ for **all** values of x
 - total area under the graph is 1

How do luse a pdf to find probabilities?

STEP1

Identify the **probability density function**, f(x) - this may be given as a **graph**, an **equation** or as a **piecewise function**

e.g.
$$f(x) = \begin{cases} 0.02x & 0 \le x \le 10\\ 0 & \text{otherwise} \end{cases}$$

Identify the **limits** of X for a particular problem Remember that $P(a \le X \le b) = P(a < X < b)$

STEP 2

Sketch, or use your GDC to draw, the graph of y = f(x)Look for basic shapes (rectangles, triangles and trapezoids) as finding these areas is easier without using integration

 ${\tt Look}\ {\tt for symmetry}\ {\tt in the graph that may make the problem easier}$

Break the area required into two or more parts if it makes the problem easier

STEP 3

Find the area(s) required using basic shapes or integration and answer the question

- Trickier problems may involve finding a limit of the integral given its value
 - i.e. Find one of the boundaries in the domain of X, given the probability
 - e.g. Find the value of a given that $P(0 \le X \le a) = 0.09$

The continuous random variable, X, has probability density function.

{"language":"en","fontFamily":"Times New Roman","fontSize":"18"}

a) Show that f(x) can represent a probability density function.

b) Find, both geometrically and using integration, $P(0 \le X \le 2)$.

Median & Mode of a CRV

What is meant by the median of a continuous random variable?

• The median, *m*, of a continuous random variable, *X*, with probability density function *f(x)* is defined as the value of *X* such that

$$P(X < m) = P(X > m) = 0.5$$

- Since P(X = m) = 0 this can also be written as $P(X \le m) = P(X \ge m) = 0.5$
- If the p.d.f. is **symmetrical** (i.e. the graph of y = f(x) is symmetrical) then the **median** will be **half way** between the **lower** and **upper** limits of x
 - In such cases the graph of y = f(x) has axis of symmetry in the line x = m

How do I find the median of a continuous random variable?

• The **median**, *m*, of a continuous random variable, *X*, with probability density function *f(x)* is defined as the value of *X* such that

or

- The equation that should be used will depend on the information in the question
 - If the graph of y = f(x) is symmetrical, symmetry may be used to deduce the median
 - This may often be the case if f(x) is linear and the area under the graph is a basic shape such as a rectangle

$^{\rm Cop}$ How do I find the median of a continuous random variable with a piecewise p.d.f.?

For piecewise functions, the location of the median will determine which equation to use in

order to find it

For example

• if
$$f(x) = \begin{cases} \frac{1}{5}x & 0 \le x \le 2\\ \frac{2}{15}(5-x) & 2 \le x \le 5\\ 0 & \text{otherwise} \end{cases}$$

• then $\int_0^2 \frac{1}{5}x \, dx = 0.4$ so the median must lie in the interval $2 \le x \le 5$

• so to find the median, *m*, solve $\int_{2}^{m} \frac{2}{15} (5-x) dx = 0.1$

('0.4 of the area' already used for $0 \le x \le 2$)

• Use a GDC to plot the function and evalutae integral(s)

What is meant by the mode of a continuous random variable?

• The mode of a continuous random variable, X, with probability density function f(x) is the value of x that produces the greatest value of f(x)

How do I find the mode of a continuous random variable?

- This will depend on the type of function f(x); the easiest way to find the mode is by considering the shape of the graph of y = f(x)
- If the graph is a curve with a maximum point, the mode can be found by differentiating and solving f'(x) = 0
 - If there is more than one solution to f'(x) = 0 then further work may be needed in deducing the mode
 - There could be more than one mode
 - Look for valid values of x from the domain of the p.d.f.
 - Use the **second derivative** (f''(x)) to **deduce** the **nature** of each **stationary point**
 - Check the values of f(x) at the lower and upper limits of x, one of these could be the maximum value f(x) reaches

Worked example

The continuous random variable X has probability function f(x) defined as

© 2024 Exam Papers Practice

$$f(x) = \frac{1}{64} (16x - x^3) \quad 0 \le x \le 4$$

a) Find the median of X, giving your answer to three significant figures.

Sketch the graph of y = f(x) using your GOC to help 7 x For the median, solve $\int_{-\infty}^{\infty} f(x) dx = \frac{1}{2}$ $\frac{1}{64}\int_{0}^{m} (16x-x^{3}) dx = \frac{1}{2}$ f(x) = 0 for x < 0 $8x^2 - \frac{1}{4}x^4 = 32$ $8m^2 - \frac{1}{4}m^4 = 32$ $m^4 - 32m^2 + 128 = 0$ This is a 'hidden quadratic' in m? ractice Using a GDC, © 2024 Exam Papps =rati 5.226 251 ... or m = ± 2.164 784 Only one of these four values lies in the range Os x sh : Median, m= 2.16 (3 s.f.)

b) Find the *exact* value of the mode of X.

Differentiate, solving
$$F'(x)=0$$
 to find the mode
 $f'(x) = \frac{1}{64}(16-3x^2)$
 $16-3x^2=0$
Using a GOC (ensure you get exact answers)
 $x=\pm\frac{4\sqrt{3}}{3}$
Clearly from sketch of graph, $x=\frac{4}{3}\sqrt{3}$ is a (local) maximum
Also, $x=-\frac{4\sqrt{3}}{3}$ does not lie in the interval $0 \le x \le 4$
 \therefore Mode = $\frac{4}{3}\sqrt{3}$

Exam Papers Practice

© 2024 Exam Papers Practice

Mean & Variance of a CRV

What are the mean and variance of a continuous random variable?

- E(X) is the **expected value**, or **mean**, of the **continuous random variable** X
 - E(X) can also be denoted by μ
- Var(*X*) is the **variance** of the continuous random variable *X*
 - Var(X) can also be denoted by σ^2
 - The standard deviation, σ, is the square root of the variance

How do I find the mean and variance of a continuous random variable?

• The mean is given by

$$\mu = E(X) = \int_{-\infty}^{\infty} xf(x) \, \mathrm{d}x$$

- This is given in the **formula booklet**
- If the graph of y = f(x) has axis of symmetry, x = a, then E(X) = a
- The variance is given by

$$\sigma^2 = \operatorname{Var}(X) = \operatorname{E}(X^2) - [\operatorname{E}(X)]^2$$

where
$$E(X^2) = \int_{-\infty}^{\infty} x^2 f(x) dx$$

- This is given in the formula booklet
- Another version of the variance is given in the **formula booklet**

$$Var(x) = \int_{-\infty}^{\infty} (x - \mu)^2 f(x) dx = \int_{-\infty}^{\infty} x^2 f(x) dx - \mu^2$$

but the first version above is usually more practical for solving problems

• Be careful about confusing $E(X^2)$ and $[E(X)]^2$

 $E(X^2) = \int_{-\infty}^{\infty} x^2 f(x) dx$ "mean of the squares"

© 2024 Exam Papers Practice

$$[E(X)]^{2} = \left[\int_{-\infty}^{\infty} xf(x) dx\right]^{2}$$

"square of the mean"

How do I find the mean and variance of a linear transformation of a continuous random variable?

• For the **continuous random variable**, X, with **mean** E(X) and **variance** Var(X) then E(X) + I = E(X) + I

E(aX+b) = aE(X) + b

and

$$\operatorname{Var}(aX+b) = a^2 \operatorname{Var}(X)$$

💽 Exam Tip

Using your GDC to draw the graph of y = f(x) can highlight any symmetrical properties which reduce the work involved in finding the mean and variance

Worked example

A continuous random variable, X, is modelled by the probability distribution function, f(x), such that

$$f(x) = \begin{cases} 1.5x^2(1-0.5x) & 0 \le x \le 2\\ 0 & \text{otherwise} \end{cases}$$

a) Find the mean of X.

