铛
 EXAM PAPERS PRACTICE

Boost your performance and confidence with these topic-based exam questions

Practice questions created by actual examiners and assessment experts

Detailed mark scheme
Suitable for all boards
Designed to test your ability and thoroughly prepare you

4.7 Further Probability Distributions

AA HL

4.7.1 Probability Density Function

Calculating Probabilities using PDF

A cont inuous rand om variable can take anyvalue in an interval so is typically used when continuo us quantities are involved (time, distance, weight, etc)

What is a probability densityfunction (p.d.f.)?

- For a continuous random variable, a function can be used to model probabilities
- This function is called a probability density function (p.d.f.), denoted byf(x)
- Forf $f(x)$ to represent ap.d.f. the following conditions must apply
- $f(x) \geq 0$ for all value of x
- The area underthe graph of $y=f(x)$ must total 1
- In most problems, the domain of x is restricted to an interval, $a \leq X \leq b$ say, with all values of x outside of the interval having $f(x)=0$

Howdo Ifind probabilities using a probability density function (p.d.f.)?

- The probability that the continuous random variable Xlies in the interval $a \leq X \leq b$, where X has the probability density function $f(x)$, is given by

$$
\mathrm{P}(a \leq X \leq b)=\int_{a}^{b} f(x) \mathrm{d} x
$$

- $\mathrm{P}(\mathrm{a} \leq \mathrm{X} \leq \mathrm{b})=\mathrm{P}(\mathrm{a}<\mathrm{X}<\mathrm{b})$
- For any continuous rand om variable (including the no rmal distribution) $P(X=n)=0$
- One way to think of this is that $a=b$ in the integral above
- For linear functions it can be easierto find the probability using the area of geometric shapes
- Rectangles: $A=b h$
- Triangles: $A=1 / 2(b h)$
- Trapezoids: $A=1 / 2(a+b) h$

Howdoldetermine whether a function is a pdf?

- Some questions may ask forjustification of the use of a given function for a pro bability density function
- In such cases check that the function meets the two conditions
- $f(x) \geq 0$ forallvalues of x
- to tal area under the graph is 1

Howdoluse a pdf to find probabilities?

STEP 1

Identify the probability density function, $f(x)$ - this maybe given as a graph, an equation or as piecewise function
e.g. $f(x)=\left\{\begin{array}{cc}0.02 x & 0 \leq x \leq 10 \\ 0 & \text { otherwise }\end{array}\right.$

Identify the limits of X for a particular pro blew
Remember that $\mathrm{P}(\mathrm{a} \leq \mathrm{X} \leq \mathrm{b})=\mathrm{P}(\mathrm{a}<\mathrm{X}<\mathrm{b})$

STEP 2

Sketch, or use your GDC to draw, the graph of $y=f(x)$
Look for basic shapes (rectangles, triangles and trapezoids) as finding these areas is easier without using integration
Look for symmetry in the graph that may make the problem easier
Break the area required into two ormore parts if it makes the problem easier

STEP 3

Find the areas) required using basic shapes or integration and answer the question

- Trickier problems may involve finding a limit of the integral given its value
- ie. Find one of the bound aries in the domain of X, given the probability
- e.g. Find the value of a given that $P(0 \leq X \leq a)=0.09$

(Worked example

The continuous rand om variable, X, has probability density function.
\{"language":"en","fontFamily":"Times New Roman","fontSize":"18"\}
a) Show that $f(x)$ can represent a probability density function.

$$
\begin{aligned}
& \text { There are two conditions for a function to be ap.df } \\
& \begin{aligned}
\text { Is }^{5} \int_{0}^{5} 0.08 x d x & =\left[\frac{0.08 x^{2}}{2}\right]_{0}^{5} \\
& =\left[0.04 x^{2}\right]_{0}^{5} \\
& =0.04 \times 5^{2}-0=1 \\
\therefore \int_{-\infty}^{\infty} f(x) d x & =1
\end{aligned} \\
& \text { Also, } f(x) \geqslant 0 \text { for all values of } x \\
& \text { so } f(x) \text { meets both conditions to represent } \\
& \text { a probability density function. }
\end{aligned}
$$

b) Find, both geometric ally and using integration, $\mathrm{P}(\mathrm{O} \leq \mathrm{X} \leq 2)$.

STEP 1: Identify the p.d.f. - given piecewise in the question Identify the limits of x

$$
f(x)=0.08 x
$$

$P(0 \leqslant x \leqslant 2)$: Lower limit 0
Upper limit 2
STEP 2: Sketch, or use GDC to draw, $y=f(x)$

STEP 3: Find the required area (s) and answer the question Geometrically

$$
\begin{gathered}
A=\frac{1}{2} \times 2 \times(0.08 \times 2)=0.16 \\
\uparrow f(2)
\end{gathered}
$$

$$
A=\left[0.04 x^{2}\right]_{0}^{2}=0.16
$$

$$
\therefore P(0 \leqslant x \leqslant 2)=0.16
$$

c) Write down $\mathrm{P}(\mathrm{X}=3.2)$.

$$
P(x=3.2)=0 \quad P(x=n)=0 \text { for all values of } n
$$

Median \& Mode of a CRV

What is meant bythe median of a continuous random variable?

- The median, m, of a continuous random variable, X, with probability density function $f(x)$ is defined as the value of X such that

$$
\mathrm{P}(X<m)=\mathrm{P}(X>m)=0.5
$$

- Since $\mathrm{P}(X=m)=0$ this can also be written as $\mathrm{P}(X \leq m)=\mathrm{P}(X \geq m)=0.5$
- If the p.d.f. is symmetrical(i.e. the graph of $y=f(x)$ is symmetric al) then the median will be half way between the lo wer and upper limits of x
- In such cases the graph of $y=f(x)$ has axis of symmetry in the line $x=m$

Howdolfind the median of a continuous random variable?

- The median, m, of a continuous rand om variable, X, with probability density function $f(x)$ is defined as the value of X such that

$$
\int_{-\infty}^{m} f(x) \mathrm{d} x=\frac{1}{2}
$$

or

$$
\int_{m}^{\infty} f(x) \mathrm{d} x=\frac{1}{2}
$$

- The equation that should be used will depend on the information in the question
- If the graph of $y=f(x)$ is symmetrical, symmetrymay be used to deduce the median
- This may often be the case if $f(x)$ is linear and the area under the graph is a basic shape such as a rectangle

How dolfind the median of a continuous randomvariable with a piecewise p.d.f.?

- Forpiecewise functions, the location of the median will determine which equation to use in orderto find it
- Forexample
- if $f(x)=\left\{\begin{array}{cc}\frac{1}{5} x & 0 \leq x \leq 2 \\ \frac{2}{15}(5-x) & 2 \leq x \leq 5 \\ 0 & \text { otherwise }\end{array}\right.$
- then $\int_{0}^{2} \frac{1}{5} x \mathrm{~d} x=0.4$ so the median must lie in the interval $2 \leq x \leq 5$
- so to find the median, m, solve $\int_{2}^{m} \frac{2}{15}(5-x) d x=0.1$
(' 0.4 of the area' already used for $0 \leq x \leq 2$)
- Use a GDC to plot the function and evalutae integral(s)

What is meant by the mode of a continuous random variable?

- The mode of a cont inuous random variable, X, with probability density function $f(x)$ is the value of x that produces the greatest value of $f(x)$

Howdo lfind the mode of a continuous random variable?

- This will depend on the type of function $f(x)$; the easiest wayto find the mode is by considering the shape of the graph of $y=f(x)$
- If the graph is a curve with a maximum point, the mode can be found by differentiating and solving $f^{\prime}(x)=0$
- If there is more than one solution to $f^{\prime}(x)=$ Othen further workmaybe needed in deducing the mode
- There could be more than one mode
- Look forvalid values of x from the domain of the p.d.f.
- Use the second derivative $\left(f^{\prime \prime}(x)\right)$ to deduce the nature of each statio nary point
- Check the values of $f(x)$ at the lo wer and upper limits of x, one of the se could be the maximum value $f(x)$ reaches

(. Worked example

The continuous random variable X has probability function $f(x)$ defined as

$$
f(x)=\frac{1}{64}\left(16 x-x^{3}\right) 0 \leq x \leq 4
$$

a) Find the median of X, giving your answer to three significant figures.

Exam Papers Practice

Sketch the graph of $y=f(x)$ using your GOC to help

For the median, solve " $\int_{-\infty}^{m} f(x) d x=\frac{1}{2}$ "
$\frac{1}{64} \int_{0}^{m}\left(16 x-x^{3}\right) d x=\frac{1}{2}$
$k f(x)=0$ for $x<0$
$\left[8 x^{2}-\frac{1}{4} x^{4}\right]_{0}^{m}=32$
$8 m^{2}-\frac{1}{4} m^{4}=32$
$m^{4}-32 m^{2}+128=0$
Copyright
This is a 'hidden quadratic' in m^{2}.
Using a GDC.
© 2024 Exam Pam $= \pm 5.226251$...
or $m= \pm 2.164784$...
Only one of these four values lies in the range $0 \leq x \leq 4$

$$
\therefore \text { Median, } m=2.16 \text { (3 s.f.) }
$$

Exam Papers Practice
b) Find the exact value of the mo de of X.

Differentiate, solving $f^{\prime}(x)=0$ to find the mode
$f^{\prime}(x)=\frac{1}{64}\left(16-3 x^{2}\right)$
$16-3 x^{2}=0$
Using a GDC (ensure you get exact answers)
$x= \pm \frac{4 \sqrt{3}}{3}$
Clearly from sketch of graph, $x=\frac{4}{3} \sqrt{3}$ is a (local) maximum
Also, $x=-\frac{4 \sqrt{3}}{3}$ does not lie in the interval $0 \leqslant x \leqslant 4$

$$
\therefore \text { Mode }=\frac{4}{3} \sqrt{3}
$$

Exam Papers Practice

Mean \& Variance of a CRV

What are the mean and variance of a continuous random variable?

- $E(X)$ is the expected value, or mean, of the cont inuous random variable X
- $\mathrm{E}(X)$ can also be denoted by μ
- $\operatorname{Var}(X)$ is the variance of the continuous random variable X
- $\operatorname{Var}(X)$ can also be denoted by σ^{2}
- The standard deviation, σ, is the square root of the variance

How do I find the mean and variance of a continuous random variable?

- The mean is given by

$$
\mu=\mathrm{E}(X)=\int_{-\infty}^{\infty} x f(x) \mathrm{d} x
$$

- This is given in the formula booklet
- If the graph of $y=f(x)$ has axis of symmetry, $x=a$, then $E(X)=a$
- The variance is given by

$$
\sigma^{2}=\operatorname{Var}(X)=\mathrm{E}\left(X^{2}\right)-[\mathrm{E}(X)]^{2}
$$

$$
\text { where } \mathrm{E}\left(X^{2}\right)=\int_{-\infty}^{\infty} x^{2} f(x) \mathrm{d} x
$$

- This is given in the formula booklet
- Another version of the variance is given in the formula booklet

$$
\operatorname{Var}(x)=\int_{-\infty}^{\infty}(x-\mu)^{2} f(x) \mathrm{d} x=\int_{-\infty}^{\infty} x^{2} f(x) \mathrm{d} x-\mu^{2}
$$

- but the first version above is usuallymore practical for solving problems
- Be careful about confusing $E\left(X^{2}\right)$ and $[E(X)]^{2}$
- $\mathrm{E}\left(X^{2}\right)=\int_{-\infty}^{\infty} x^{2} f(x) \mathrm{d} x$ "mean of the squares"
- $[\mathrm{E}(X)]^{2}=\left[\int_{-\infty}^{\infty} x f(x) \mathrm{d} x\right]^{2} \quad$ "s quare of the mean"

Howdo Ifind the mean and variance of a linear transformation of a continuous random variable?

- Forthe cont inuous random variable, X, with mean $E(X)$ and variance $\operatorname{Var}(X)$ then

$$
\mathrm{E}(a X+b)=a \mathrm{E}(X)+b
$$

and

$$
\operatorname{Var}(a X+b)=a^{2} \operatorname{Var}(X)
$$

(-) Exam Tip

- Using your GDC to draw the graph of $y=f(x)$ can highlight any symmetrical pro perties which reduce the work involved in finding the mean and variance

Worked example

A continuous rand o m variable, X, is modelled by the probability dis tribution function, $f(x)$, such that

$$
f(x)= \begin{cases}1.5 x^{2}(1-0.5 x) & 0 \leq x \leq 2 \\ 0 & \text { otherwise }\end{cases}
$$

a) Find the mean of X.

Use your GDC to sketch the graph of $y=f(x)$

$\therefore \mu=\int_{0}^{2} x\left[1.5 x^{2}(1-0.5 x)\right] d x$ Evaluate using your GDC

$$
\mu=1.2
$$

To do without GDC.

$$
\begin{aligned}
& \mu=\int_{0}^{2}\left(1.5 x^{3}-0.75 x^{4}\right) d x \\
& \mu=\left[0.375 x^{4}-0.15 x^{5}\right]_{0}^{2} \\
& \mu=6-4.8=1.2
\end{aligned}
$$

b)

Find stand ard deviation of X.
Copyright
© 2024 Exam Papers Practice

$$
\begin{gathered}
\sigma=\sqrt{\operatorname{Var}(X)} \quad \operatorname{Var}(X)=E\left(X^{2}\right)-[E(X)]^{2} \\
E\left(x^{2}\right)=\int_{0}^{2} x^{2}\left[1.5 x^{2}(1-0.5 x)\right] d x \\
\text { Using GDC, } E\left(x^{2}\right)=1.6 \\
\therefore \sigma=\sqrt{1.6-(1.2)^{2}}=\sqrt{0.16}=0.4 \\
E\left(x^{2}\right)^{\prime} \quad \mathbb{N}^{2}(x) \\
\sigma=0.4
\end{gathered}
$$

