

4.6 Normal Distribution

Contents

- * 4.6.1 The Normal Distribution
- * 4.6.2 Calculations with Normal Distribution
- * 4.6.3 Standardisation of Normal Variables

Piatris Reserved

4.6.1 The Normal Distribution

Properties of Normal Distribution

The binomial distribution is an example of a discrete probability distribution. The normal distribution is an example of a **continuous** probability distribution.

What is a continuous random variable?

- A continuous random variable (often abbreviated to CRV) is a random variable that can take any value within a range of infinite values
 - Continuous random variables usually measure something
 - For example, height, weight, time, etc

What is a continuous probability distribution?

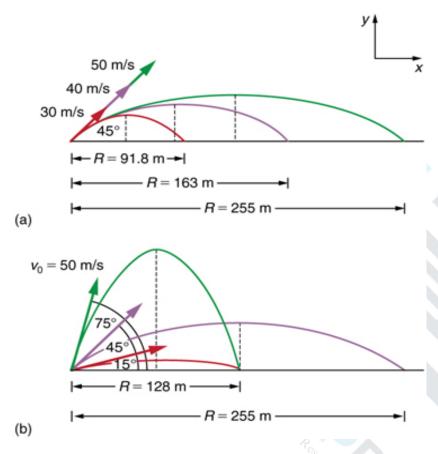
- ullet A continuous probability distribution is a probability distribution in which the random variable X is continuous
- ullet The probability of X being a particular value is always zero
 - P(X=k) = 0 for any value k
 - Instead we define the **probability density function** f(x) for a specific value
 - This is a function that describes the relative likelihood that the random variable would be close to that value
 - We talk about the **probability** of X being within a **certain range**
- ullet A continuous probability distribution can be represented by a continuous graph (the values for X along the horizontal axis and probability **density** on the vertical axis)
- The area under the graph between the points x=a and x=b is equal to $P(a \le X \le b)$
 - The total area under the graph equals 1
- As P(X=k)=0 for any value k, it does not matter if we use strict or weak inequalities
 - $P(X \le k) = P(X \le k)$ for any value k when X is a **continuous random variable**

What is a normal distribution?

- A normal distribution is a **continuous probability distribution**
- ullet The **continuous random variable** X can follow a normal distribution if:
 - The distribution is symmetrical
 - The distribution is **bell-shaped**
- If X follows a normal distribution then it is denoted $X\!\sim\!{
 m N}(\mu,\,\sigma^2)$
 - μ is the **mean**
 - σ^2 is the variance
 - \bullet σ is the **standard deviation**
- If the **mean** changes then the graph is **translated horizontally**

3

- If the variance increases then the graph is widened horizontally and made shorter vertically to maintain the same area
 - A small variance leads to a tall curve with a narrow centre
 - A large variance leads to a short curve with a wide centre



What are the important properties of a normal distribution?

- The **mean** is μ
- The **variance** is σ^2
 - If you need the **standard deviation** remember to square root this
- The normal distribution is symmetrical about $X = \mu$
 - Mean = Median = Mode = μ
- There are the results:
 - Approximately **two-thirds (68%)** of the data lies within **one standard deviation** of the mean $(\mu \pm \sigma)$
 - Approximately 95% of the data lies within two standard deviations of the mean ($\mu \pm 2\sigma$)
 - Nearly all of the data (99.7%) lies within three standard deviations of the mean ($\mu \pm 3\sigma$)

Modelling with Normal Distribution

What can be modelled using a normal distribution?

- A lot of real-life continuous variables can be modelled by a normal distribution provided that the population is large enough and that the variable is **symmetrical** with **one mode**
- For a normal distribution X can take any real value, however values far from the mean (more than 4 standard deviations away from the mean) have a probability density of **practically zero**
 - This fact allows us to model variables that are not defined for all real values such as height and weight

What can not be modelled using a normal distribution?

- Variables which have more than one mode or no mode
 - For example: the number given by a random number generator
- Variables which are not symmetrical
 - For example: how long a human lives for

Ceserred

Worked example

The random variable S represents the speeds (mph) of a certain species of cheetahs when they run. The variable is modelled using $N(40,\,100)$.

a) Write down the mean and standard deviation of the running speeds of cheetahs.

$$\mu$$
= 40 and σ^2 = 100
Square root to get standard deviation

Mean
$$\mu=40$$

Standard deviation $\sigma=10$

b) State two assumptions that have been made in order to use this model.

We assume that the distribution of the speeds is

- · symmetrical
- · bell-shaped

Ciantis Reserved

4.6.2 Calculations with Normal Distribution

Calculating Normal Probabilities

Throughout this section we will use the random variable $X \sim N(\mu, \sigma^2)$. For X distributed normally, X can take any real number. Therefore any values mentioned in this section will be assumed to be real numbers.

How do I find probabilities using a normal distribution?

- The area under a normal curve between the points X = a and X = b is equal to the probability P(a < X < b)
 - Remember for a normal distribution you do not need to worry about whether the inequality is strict (< or >) or weak (≤ or ≥)
 - $P(a < X < b) = P(a \le X \le b)$
- You will be expected to use distribution functions on your GDC to find the probabilities when working with a normal distribution

How do I calculate P(X = x): the probability of a single value for a normal distribution?

- The probability of a single value is always zero for a normal distribution
 - You can picture this as the area of a single line is zero
- P(X=x)=0
- Your GDC is likely to have a "Normal Probability Density" function
 - This is sometimes shortened to NPD, Normal PD or Normal Pdf
 - **IGNORE THIS FUNCTION** for this course!
 - This calculates the **probability density function** at a point **NOT the probability**

How do I calculate P(a < X < b): the probability of a range of values for a normal distribution?

- You need a GDC that can calculate cumulative normal probabilities
- You want to use the "Normal Cumulative Distribution" function
 - This is sometimes shortened to NCD, Normal CD or Normal Cdf
- You will need to enter:
 - The 'lower bound' this is the value a
 - The 'upper bound' this is the value b
 - The ' μ ' value this is the mean
 - The ' σ ' value this is the standard deviation
- Check the order carefully as some calculators ask for standard deviation before mean
 - Remember it is the standard deviation
 - so if you have the variance then square root it
- Always sketch a quick diagram to visualise which area you are looking for

How do I calculate P(X > a) or P(X < b) for a normal distribution?

3

- You will still use the "Normal Cumulative Distribution" function
- ullet P(X>a) can be estimated using an **upper bound that is sufficiently bigger** than the **mean**
 - Using a value that is more than 4 standard deviations **bigger than the mean** is quite accurate
 - Or an easier option is just to input lots of 9's for the upper bound (999999999... or 10⁹⁹)
- P(X < b) can be estimated using a **lower bound that is sufficiently smaller** than the **mean**
 - Using a value that is more than 4 standard deviations **smaller than the mean** is quite accurate
 - Or an easier option is just to input lots of 9's for the lower bound with a negative sign (-999999999... or -10⁹⁹)

Are there any useful identities?

•
$$P(X < \mu) = P(X > \mu) = 0.5$$

• As
$$P(X=a)=0$$
 you can use:

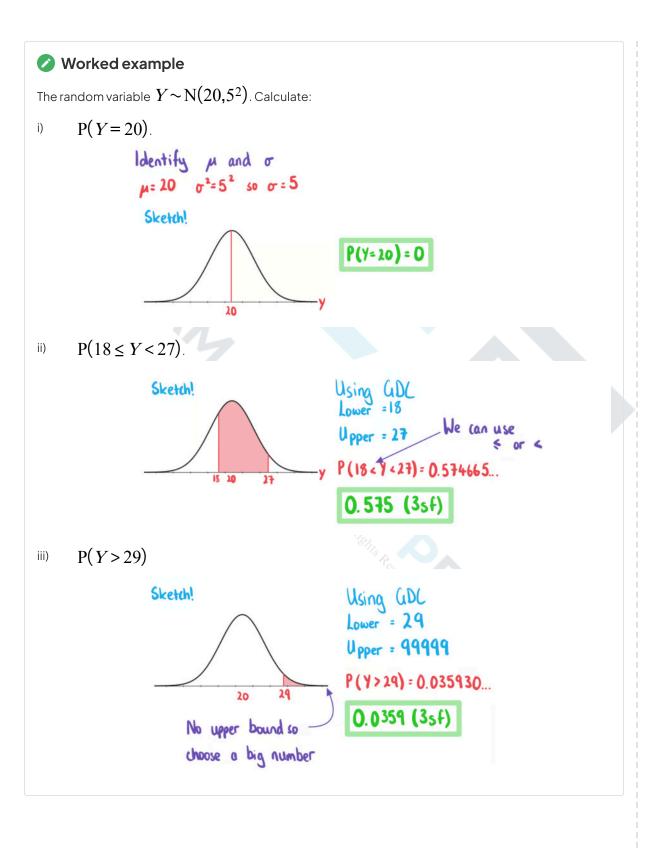
•
$$P(X < a) + P(X > a) = 1$$

•
$$P(X > a) = 1 - P(X < a)$$

$$P(a < X < b) = P(X < b) - P(X < a)$$

- These are useful when:
 - The mean and/or standard deviation are unknown
 - You only have a diagram
 - You are working with the inverse distribution

Peserred



Inverse Normal Distribution

Given the value of P(X < a) how do I find the value of a?

- Your GDC will have a function called "Inverse Normal Distribution"
 - Some calculators call this InvN
- Given that P(X < a) = p you will need to enter:
 - The 'area' this is the value p
 - Some calculators might ask for the 'tail' this is the left tail as you know the area to the left of a
 - The ' μ ' value this is the mean
 - The ' σ ' value this is the standard deviation

Given the value of P(X > a) how do I find the value of a?

- If your calculator does have the tail option (left, right or centre) then you can use the "Inverse Normal Distribution" function straightaway by:
 - Selecting 'right' for the tail
 - Entering the area as 'p'
- If your calculator **does not** have the **tail option** (left, right or centre) then:
 - Given P(X > a) = p
 - Use P(X < a) = 1 P(X > a) to rewrite this as
 - P(X < a) = 1 p
 - Then use the **method for P(X < a)** to find a

's Reserved

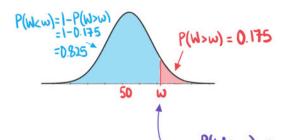
Worked example

The random variable $W \sim N(50, 36)$.

Find the value of W such that P(W > W) = 0.175.

Identify
$$\mu$$
 and σ
 $\mu = 50$ $\sigma^2 = 36$ so $\sigma = 6$

Sketch!



P(W>w) is less than 0.5 so w is bigger than the mean

Area from left is 0.825

Use Inverse Normal Distribution function on GDC

w= 55.6075 ...

 $\omega = 55.6 \ (3sf)$

4.6.3 Standardisation of Normal Variables

Standard Normal Distribution

What is the standard normal distribution?

- The standard normal distribution is a normal distribution where the mean is 0 and the standard deviation is 1
 - lacksquare It is denoted by Z
 - $Z \sim N(0, 1^2)$

Why is the standard normal distribution important?

- Any normal distribution curve can be transformed to the standard normal distribution curve by a horizontal translation and a horizontal stretch
- Therefore we have the relationship:

$$Z = \frac{X - \mu}{\sigma}$$

- Where $X \sim \mathrm{N}(\mu, \, \sigma^2)$ and $Z \sim \mathrm{N}(0, \, 1^2)$
- Probabilities are related by:

$$P(a < X < b) = P\left(\frac{a - \mu}{\sigma} < Z < \frac{b - \mu}{\sigma}\right)$$

- This will be useful when the mean or variance is unknown
- lacksquare Some mathematicians use the function $\Phi(z)$ to represent $\mathrm{P}(Z\!<\!z)$

z-values

What are z-values (standardised values)?

- For a normal distribution $X \sim N(\mu, \sigma^2)$ the z-value (standardised value) of an x-value tells you how many standard deviations it is away from the mean
 - If z = 1 then that means the x-value is 1 standard deviation bigger than the mean
 - If z = -1 then that means the x-value is 1 standard deviation smaller than the mean
- If the x-value is more than the mean then its corresponding z-value will be positive
- If the x-value is less than the mean then its corresponding z-value will be negative
- The z-value can be calculated using the formula:

$$z = \frac{x - \mu}{\sigma}$$

- This is given in the formula booklet
- z-values can be used to compare values from different distributions

Finding Sigma and Mu

How do I find the mean (μ) or the standard deviation (σ) if one of them is unknown?

- If the **mean** or **standard deviation** of $X \sim N(\mu, \sigma^2)$ is **unknown** then you will need to use the **standard normal distribution**
- You will need to use the formula

$$z = \frac{x - \mu}{\sigma} \text{ or its rearranged form } X = \mu + \sigma Z$$

• You will be given a probability for a specific value of

•
$$P(X < X) = p \text{ or } P(X > X) = p$$

- To find the unknown parameter:
- STEP 1: Sketch the normal curve
 - Label the known value and the mean
- STEP 2: Find the z-value for the given value of x
 - Use the **Inverse Normal Distribution** to find the value of Z such that P(Z < z) = p or P(Z > z) = p
 - ullet Make sure the direction of the inequality for Z is consistent with the inequality for X
 - Try to use lots of decimal places for the z-value or store your answer to avoid rounding errors
 - You should use at least one extra decimal place within your working than your intended degree of accuracy for your answer
- STEP 3: Substitute the known values into $Z = \frac{X \mu}{\sigma}$ or $X = \mu + \sigma Z$
 - You will be given and one of the parameters (μ or σ) in the question
 - You will have calculated z in STEP 2
- STEP 4: Solve the equation

How do I find the mean (μ) and the standard deviation (σ) if both of them are unknown?

- If **both** of them are **unknown** then you will be given two probabilities for two specific values of **x**
- The process is the same as above
 - You will now be able to calculate two z -values
 - You can form **two equations** (rearranging to the form $X = \mu + \sigma Z$ is helpful)
 - You now have to solve the two equations simultaneously (you can use your calculator to do this)
 - lacktriangle Be careful not to mix up which z-value goes with which value of x

Worked example

It is known that the times, in minutes, taken by students at a school to eat their lunch can be modelled using a normal distribution with mean μ minutes and standard deviation σ minutes.

Given that 10% of students at the school take less than 12 minutes to eat their lunch and 5% of the students take more than 40 minutes to eat their lunch, find the mean and standard deviation of the time taken by the students at the school.

Let
$$T \sim N(\mu, \sigma^2)$$
 be the time taken to eat lunch
STEP 1
Sketch the information

$$P(T < 12) = 0.1 \qquad P(T > 40) = 0.05$$

STEP 2

Find the corresponding z-values using inverse normal on GDC

$$Z \sim N(0, 1^2)$$

$$P(2 < 2, 1 = 0.1) \Rightarrow z_1 = -1.2815...$$

$$P(2 > z_2) = 0.05 \Rightarrow P(2 < z_2) = 0.95 \Rightarrow z_2 = 1.6448...$$

STEP 3

Form equations using $z = \frac{x - \mu}{\sigma}$ or $x = \mu + \sigma z$

$$12 = \mu - (1.2815...)\sigma$$

4D = μ + (1.6448...) σ

STEP 4

Solve equations using GDC
$$\mu = 24.26... \qquad \sigma = 9.568...$$

Mean = 24.3 mins (3sf)

Standard deviation = 9.57 mins (3sf)