Boost your performance and confidence with these topic-based exam questions

Practice questions created by actual examiners and assessment experts

Detailed mark scheme
Suitable for all boards
Designed to test your ability and thoroughly prepare you

4.6 Random Variables

4.6.1 Linear Combinations of Random Variables

Transformation of a Single Variable

What is $\operatorname{Var}(X)$?

- $\operatorname{Var}(X)$ represents the variance of the random variable X
- $\operatorname{Var}(X)$ can be calculated by the formula
- $\operatorname{Var}(X)=\mathrm{E}\left(X^{2}\right)-[\mathrm{E}(X)]^{2}$
- where $\mathrm{E}\left(X^{2}\right)=\sum X^{2} \mathrm{P}(X=x)$
- You will not be required to use this formula in the exam

What are the formulae for $E(a X \pm b)$ and $\operatorname{Var}(a X \pm b)$?

- If a and b are constants then the following formulae are true:
- $\mathrm{E}(a X \pm b)=a \mathrm{E}(X) \pm b$
- $\operatorname{Var}(a X \pm b)=a^{2} \operatorname{Var}(X)$
- These are given in the formula booklet
- This is the same as lineartransformations of data
- The mean is affected by multiplication and addition/subtraction
- The variance is affected by multiplication but not addition/subtraction
- Remember division can be written as a multiplication
- $\frac{X}{a}=\frac{1}{a} X$

Worked example

X is a rando m variable such that $\mathrm{E}(X)=5$ and $\operatorname{Var}(X)=4$.
Find the value of:
(i) $\mathrm{E}(3 X+5)$
(ii) $\operatorname{Var}(3 X+5)$
(iii) $\operatorname{Var}(2-X)$.

$$
\begin{aligned}
& \text { Formula booklet } \quad \begin{array}{ll|l|}
\hline \begin{array}{l}
\text { Linear transformation of a } \\
\text { single random variable }
\end{array} & \begin{array}{l}
\mathrm{E}(a X+b)=a \mathrm{E}(X)+b \\
\operatorname{Var}(a X+b)=a^{2} \operatorname{Var}(X)
\end{array} \\
\hline
\end{array} \\
& E(3 X+5)=3 E(x)+5=3(5)+5 \quad E(3 X+5)=20 \\
& \operatorname{Var}(3 x+5)=3^{2} \operatorname{Var}(x)=9(4) \quad \operatorname{Var}(3 x+5)=36 \\
& \operatorname{Var}(2-x)=(-1)^{2} \operatorname{Var}(x)=1(4) \quad \operatorname{Var}(2-x)=4
\end{aligned}
$$

Transformation of Multiple Variables

What is the mean and variance of $a X+b Y$?

- Let X and Y be two random variables and let a and b be two constants
- $\mathrm{E}(a X+b Y)=a \mathrm{E}(X)+b \mathrm{E}(Y)$
- This is true for any randomvariables X and Y
- $\operatorname{Var}(a X+b Y)=a^{2} \operatorname{Var}(X)+b^{2} \operatorname{Var}(Y)$
- This is true if X and Y are independent
- $\mathrm{E}(a X-b Y)=a \mathrm{E}(X)-b \mathrm{E}(Y)$
- $\operatorname{Var}(a X-b Y)=a^{2} \operatorname{Var}(X)+b^{2} \operatorname{Var}(Y)$
- Notice that you still add the two terms to gether on the right hand side
- This is because b^{2} is positive even if b is negative
- Therefore the variances of $a X+b Y$ and $a X$ - $b Y$ are the same

What is the mean and variance of a linear combination of n random variables?

- Let $X_{1}, X_{2}, \ldots, X_{n}$ be n random variables and $a_{1}, a_{2}, \ldots, a_{n}$ be n constants
$\mathrm{E}\left(a_{1} X_{1} \pm a_{2} X_{2} \pm \ldots \pm a_{n} X_{n}\right)=a_{1} \mathrm{E}\left(X_{1}\right) \pm a_{2} \mathrm{E}\left(X_{2}\right) \pm \ldots \pm a_{n} \mathrm{E}\left(X_{n}\right)$
- This is given in the formula booklet
- This can be written as $\mathrm{E}\left(\sum a_{i} X_{i}\right)=\sum a_{i} \mathrm{E}\left(X_{i}\right)$
- This is true for any random variable
$\operatorname{Var}\left(a_{1} X_{1} \pm a_{2} X_{2} \pm \ldots \pm a_{n} X_{n}\right)=a_{1}{ }^{2} \operatorname{Var}\left(X_{1}\right)+a_{2}{ }^{2} \operatorname{Var}\left(X_{2}\right)+\ldots+a_{n}{ }^{2} \operatorname{Var}\left(X_{n}\right)$
- This is given in the formula booklet
- This can be written as $\operatorname{Var}\left(\sum a_{i} X_{i}\right)=\sum a_{i}^{2} \operatorname{Var}\left(X_{i}\right)$
- This is true if the random variables are independent
- Notice that the constants get squared so the terms on the right-hand side will always be positive

For a given random variable X, what is the difference between $2 X$ and $X_{1}+X_{2}$?

- $2 X$ means one observation of X is taken and thendoubled
- $X_{1}+X_{2}$ means two observations of X are taken and then added together
- $2 X$ and $X_{1}+X_{2}$ have the same expected values
- $\mathrm{E}(2 X)=2 \mathrm{E}(X)$
- $\mathrm{E}\left(X_{7}+X_{2}\right)=\mathrm{E}\left(X_{7}\right)+\mathrm{E}\left(X_{2}\right)=2 \mathrm{E}(X)$
- $2 X$ and $X_{1}+X_{2}$ have different variances
- $\operatorname{Var}(2 X)=2^{2} \operatorname{Var}(X)=4 \operatorname{Var}(X)$
- $\operatorname{Var}\left(X_{7}+X_{2}\right)=\operatorname{Var}\left(X_{7}\right)+\operatorname{Var}\left(X_{2}\right)=2 \operatorname{Var}(X)$
- To see the distinction:
- Suppose X could take the values 0 and 1
- $2 X$ could then take the values 0 and 2
- $X_{1}+X_{2}$ could then take the values 0,1 and 2
- Questions are likelyto describe the variables in context
- For example:The mass of a carton containing 6 eggs is the mass of the carton plus the mass of the 6 individual eggs
- This can be modelled by $M=C+E_{1}+E_{2}+E_{3}+E_{4}+E_{5}+E_{6}$ where
- Cis the mass of a carton
- Eis the mass of an egg
- It is not $C+6$ Ebecause the masses of the 6 eggs could be different

(-) Exam Tip

- In an exam when dealing with multiple variables ask yourself which of the two cases is true
- You are adding to gether different observations using the same variable: $X_{1}+X_{2}+\ldots+X_{n}$
- You are taking a single observation of a variable and multiplying it by a constant: $n X$

Worked example

X and Y are independent random variables such that

$$
\begin{gathered}
\mathrm{E}(X)=5 \& \operatorname{Var}(X)=3 \\
\mathrm{E}(Y)=-2 \& \operatorname{Var}(Y)=4
\end{gathered}
$$

Find the value of:
(i) $\mathrm{E}(2 X+5 Y)$,
(ii) $x a m \operatorname{Var}(2 X+5 Y)$,
(iii) $\operatorname{Var}(4 X-Y)$.

Formula booklet \quad	Linear combinations of n
independent random	
variables, $X_{1}, X_{2}, \ldots, X_{n}$	\(\quad \begin{aligned} \& \mathrm{E}\left(a_{1} X_{1} \pm a_{2} X_{2} \pm ··· \pm a_{n} X_{n}\right)=a_{1} \mathrm{E}\left(X_{1}\right) \pm a_{2} \mathrm{E}\left(X_{2}\right) \pm ··· \pm a_{n} \mathrm{E}\left(X_{n}\right)

\& \operatorname{Var}\left(a_{1} X_{1} \pm a_{2} X_{2} \pm ··· \pm a_{n} X_{n}\right)

\& =a_{1}{ }^{2} \operatorname{Var}\left(X_{1}\right)+a_{2}{ }^{2} \operatorname{Var}\left(X_{2}\right)+···+a_{n}{ }^{2} \operatorname{Var}\left(X_{n}\right)\end{aligned}\)

$$
\begin{array}{ll}
E(2 x+5 y)=2 E(x)+5 E(y)=2(5)+5(-2) & E(2 x+5 y)=0 \\
\operatorname{Var}(2 x+5 y)=2^{2} \operatorname{Var}(x)+5^{2} \operatorname{Var}(y)=4(3)+25(4) & \operatorname{Var}(2 x+5 y)=112 \\
\operatorname{Var}(4 x-y)=4^{2} \operatorname{Var}(x)+\operatorname{Var}(y)=16(3)+4 & \operatorname{Var}(4 x-y)=52
\end{array}
$$

4.6.2 Unbiase d Estimates

Unbiased Estimates

What is an unbiased estimat or of a population parameter?

- An estimator is a random variable that is used to estimate a population parameter
- An estimate is the value produced by the estimatorwhen a sample is used
- An estimator is called unbiased if its expected value is equal to the population parameter
- An estimate from an unbiased estimatoris called an unbiased estimate
- This means that the mean of the unbiased estimates will get closer to the population parameter as more samples are taken
- The sample mean is an unbiased estimate for the population mean
- The sample variance is not an unbiased estimate for the population variance
- On average the sample variance will underestimate the population variance
- As the sample size increases the sample variance gets closer to the unbias ed estimate

What are the formulae for unbiased estimates of the mean and variance of a population?

- A sample of n d ata values (x_{7}, x_{2}, \ldots etc) can be used to find unbiased estimates for the mean and variance of the population
- An unbiased estimate for the mean μ of a population can be calculated using
- $\bar{X}=\frac{\sum x}{n}$
- An unbiased estimate for the variance σ^{2} of a population can be calculated using
$S_{n-1}^{2}=\frac{n}{n-1} S_{n}^{2}$
- This is given in the formula booklet
- S_{n}^{2} is the variance of the sample data

$$
s_{n}^{2}=\frac{\sum(x-\bar{x})^{2}}{n}=\frac{\sum x^{2}}{n}-(\bar{x})^{2}
$$

- Different calculators can use different notations for S_{n-1}^{2}
- $\sigma_{n-1}^{2}, S^{2}, \widehat{S}^{2}$ are notations you might see
- You may also see the square roots of these

Is s_{n-1} an unbiased estimate for the standard deviation?

- Unfortunately s_{n-1} is not an unbiased estimate for the stand ard deviation of the population
- It is better to work with the unbiased variance rather than standard deviation
- There is not a formula for an unbiased estimate for the standard deviation that works for all populations
- Therefore you will not be asked to find one in your exam

How do Ishowthe sample mean is an unbiasedestimate for the population mean?

- Youdo not need to learn this proof
- It is simplyhere to help with yo ur und erstanding
- Suppose the population of Xhas mean μ and variance σ^{2}
- Take a sample of nobservations
- $X_{1,}, X_{2}, \ldots, X_{n}$
- $E\left(X_{i}\right)=\mu$
- Using the formula for a linear combination of n independent variables:

$$
\begin{aligned}
\mathrm{E}(\bar{X}) & =\mathrm{E}\left(\frac{X_{1}+X_{2}+\ldots+X_{n}}{n}\right) \\
& =\frac{\mathrm{E}\left(X_{1}\right)+\mathrm{E}\left(X_{2}\right)+\ldots+\mathrm{E}\left(X_{n}\right)}{n} \\
& =\frac{\mu+\mu+\ldots+\mu}{n} \\
& =\frac{n \mu}{n} \\
& =\mu
\end{aligned}
$$

- As $\mathrm{E}(\bar{X})=\mu$ this shows the formula will produce an unbiased estimate for the po pulation mean

Why is there a divisor of $n-1$ in the unbiased estimate for the variance?

- Youdo not need to learn this proof
- It is simplyhere to help with yo ur und erstanding
- Suppose the populatio n of Xhas mean μ and variance σ^{2}
- Take a sample of n observations
- $X_{1}, X_{2}, \ldots, X_{n}$
- $E\left(X_{j}\right)=\mu$
- $\operatorname{Var}\left(X_{j}\right)=\sigma^{2}$
- Using the formula for a linear combination of n independent variables:

Exam Papers Practice

$$
\begin{aligned}
\operatorname{Var}(\bar{X}) & =\operatorname{Var}\left(\frac{X_{1}+X_{2}+\ldots+X_{n}}{n}\right) \\
& =\frac{\operatorname{Var}\left(X_{1}\right)+\operatorname{Var}\left(X_{2}\right)+\ldots+\operatorname{Var}\left(X_{n}\right)}{n^{2}} \\
& =\frac{\sigma^{2}+\sigma^{2}+\ldots+\sigma^{2}}{n^{2}} \\
& =\frac{n \sigma^{2}}{n^{2}} \\
& =\frac{\sigma^{2}}{n}
\end{aligned}
$$

- It can be shown that $\mathrm{E}\left(\bar{X}^{2}\right)=\mu^{2}+\frac{\sigma^{2}}{n}$
- This comes from rearranging $\operatorname{Var}(\bar{X})=\mathrm{E}\left(\bar{X}^{2}\right)-[\mathrm{E}(\bar{X})]^{2}$
- It can be shown that $\mathrm{E}\left(X^{2}\right)=\mathrm{E}\left(X_{i}^{2}\right)=\mu^{2}+\sigma^{2}$
- This comes from rearranging $\operatorname{Var}(X)=\mathrm{E}\left(X^{2}\right)-[\mathrm{E}(X)]^{2}$
- Using the formula for a linear combination of nindependent variables:

$$
\begin{aligned}
\mathrm{E}\left(S_{n}^{2}\right) & =\mathrm{E}\left(\frac{\sum X_{i}^{2}}{n}-\bar{X}^{2}\right) \\
& =\frac{\sum \mathrm{E}\left(X_{i}^{2}\right)}{n}-\mathrm{E}\left(\bar{X}^{2}\right)
\end{aligned}
$$

$$
=\frac{\sum\left(\mu^{2}+\sigma^{2}\right)}{n}-\left(\mu^{2}+\frac{\sigma^{2}}{n}\right)
$$

$$
=\frac{n\left(\mu^{2}+\sigma^{2}\right)}{n}-\left(\mu^{2}+\frac{\sigma^{2}}{n}\right)
$$

$$
=\mu^{2}+\sigma^{2}-\left(\mu^{2}+\frac{\sigma^{2}}{n}\right)
$$

$$
=\sigma^{2}-\frac{\sigma^{2}}{n}
$$

$$
=\frac{n \sigma^{2}-\sigma^{2}}{n}
$$

$$
=\frac{n-1}{n} \sigma^{2}
$$

- As $\mathrm{E}\left(S_{n}^{2}\right) \neq \sigma^{2}$ this shows that the sample variance is not unbiased
- You need to multiply by $\frac{n}{n-1}$
- $\mathrm{E}\left(S_{n-1}^{2}\right)=\sigma^{2}$

© Exam Tip

- Check the wording of the exam question carefully to determine which of the following you are given:
- The population variance: σ^{2}
- The sample variance: S_{n}^{2}
- An unbiased estimate for the po pulation variance: S_{n-1}^{2}

Worked example

The times, X minutes, spent on daily revision of a random sample of 50 IB students from the UK are summarised as follows.

$$
n=50 \quad \sum x=6174 \quad s_{n}^{2}=1384.3
$$

Calculate unbiased estimates of the population mean and variance of the times spent on daily revision by IB stud dents in the UK.

Unbiased estimate of population mean $\bar{x}=\frac{\Sigma x}{n}$

$$
\begin{aligned}
& \bar{x}_{2}=\frac{6174}{}=123.48 \\
& \bar{x}=123 \text { minutes (3sf) }
\end{aligned}
$$

Formula booklet \begin{tabular}{|l|l|}
\hline \(\begin{array}{l}Unbiased estimate of

population variance

s_{n-1}^{2}\end{array}\) \& | $s_{n-1}^{2}=\frac{n}{n-1} s_{n}^{2}$ |
| :--- |

\hline
\end{tabular}

$$
S_{n-1}^{2}=\frac{50}{49} \times 1384.3=1412.55 \ldots
$$

$$
S_{n-1}^{2}=1410 \text { minutes }^{2}(3 s f)
$$

