

Boost your performance and confidence with these topic-based exam questions

Practice questions created by actual examiners and assessment experts

Detailed mark scheme

Suitable for all boards

Designed to test your ability and thoroughly prepare you

4.6 Random Variables

IB Maths - Revision Notes

4.6.1 Linear Combinations of Random Variables

Transformation of a Single Variable

What is Var(X)?

- Var(X) represents the variance of the random variable X
- Var(X) can be calculated by the formula
 - $Var(X) = E(X^2) [E(X)]^2$
 - where $E(X^2) = \sum x^2 P(X = x)$
 - You will **not be required** to use this formula in the exam

What are the formulae for $E(aX \pm b)$ and $Var(aX \pm b)$?

- If *a* and *b* are constants then the following formulae are true:
 - $E(aX \pm b) = aE(X) \pm b$
 - $Var(aX \pm b) = a^2 Var(X)$
 - These are given in the formula booklet
- This is the same as linear transformations of data
 - The mean is affected by multiplication and addition/subtraction
 - The variance is affected by multiplication but not addition/subtraction
- Remember division can be written as a multiplication

$$\frac{X}{a} = \frac{1}{a}X$$

Worked example
X is a random variable such that
$$E(X) = 5$$
 and $Var(X) = 4$.
CopyFind the value of:
 224 Exam Papers Practice
(i) $E(3X + 5)$
(ii) $Var(3X + 5)$
(iii) $Var(2 - X)$.
Formula booklet Linear transformation of a $E(aX + b) = aE(X) + b$
 $Var(aX + b) = a^2 Var(X)$
 $E(3X + 5) = 3E(X) + 5 = 3(5) + 5$ $E(3X + 5) = 20$
 $Var(3X + 5) = 3^2 Var(X) = 9(4)$ $Var(3X + 5) = 36$
 $Var(2 - X) = (-1)^2 Var(X) = 1(4)$ $Var(2 - X) = 4$

Transformation of Multiple Variables

What is the mean and variance of aX + bY?

- Let X and Y be two random variables and let *a* and *b* be two constants
- E(aX + bY) = aE(X) + bE(Y)
 - This is true for **any random variables** X and Y
- $\operatorname{Var}(aX + bY) = a^2 \operatorname{Var}(X) + b^2 \operatorname{Var}(Y)$
 - This is true if X and Y are **independent**
- = E(aX bY) = aE(X) bE(Y)
- $\operatorname{Var}(aX bY) = a^2 \operatorname{Var}(X) + b^2 \operatorname{Var}(Y)$
 - Notice that you still add the two terms together on the right hand side
 - This is because b² is positive even if b is negative
 - Therefore the variances of aX + bY and aX bY are the same

What is the mean and variance of a linear combination of *n*random variables?

• Let $X_1, X_2, ..., X_n$ be *n* random variables and $a_1, a_2, ..., a_n$ be *n* constants

$$E(a_{1}X_{1} \pm a_{2}X_{2} \pm \dots \pm a_{n}X_{n}) = a_{1}E(X_{1}) \pm a_{2}E(X_{2}) \pm \dots \pm a_{n}E(X_{n})$$

- This is given in the formula booklet
- This can be written as $E\left(\sum a_i X_i\right) = \sum a_i E(X_i)$
- This is true for any random variable

$$\operatorname{Var}(a_{1}X_{1} \pm a_{2}X_{2} \pm \dots \pm a_{n}X_{n}) = a_{1}^{2}\operatorname{Var}(X_{1}) + a_{2}^{2}\operatorname{Var}(X_{2}) + \dots + a_{n}^{2}\operatorname{Var}(X_{n})$$

- This can be written as $\operatorname{Var}\left(\sum a_i X_i\right) = \sum a_i^2 \operatorname{Var}(X_i)$

Copyright This is true if the random variables are **independent**

© 2024 Exam Papers Practice Notice that the constants get squared so the terms on the right-hand side will always be positive

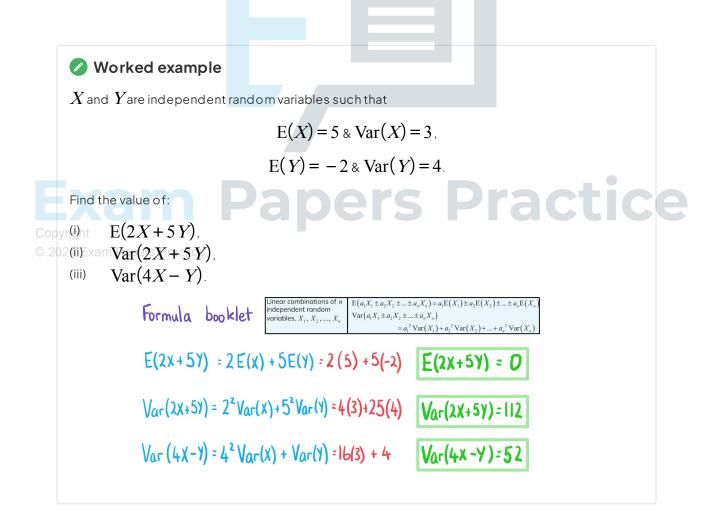
For a given random variable X, what is the difference between 2X and $X_1 + X_2$?

- 2X means one observation of X is taken and then doubled
- X₁ + X₂ means two observations of X are taken and then added together
- 2X and X₁ + X₂ have the same expected values
 - = E(2X) = 2E(X)
 - $E(X_1 + X_2) = E(X_1) + E(X_2) = 2E(X)$
- 2X and X₁ + X₂ have different variances
 - $Var(2X) = 2^2Var(X) = 4Var(X)$
 - Var(X₁ + X₂) = Var(X₁) + Var(X₂) = 2Var(X)

- To see the distinction:
 - Suppose X could take the values 0 and 1
 - 2X could then take the values 0 and 2
 - $X_1 + X_2$ could then take the values 0,1 and 2
- Questions are likely to describe the variables in context
 - For example: The mass of a carton containing 6 eggs is the mass of the carton plus the mass of the 6 **individual** eggs
 - This can be modelled by $M = C + E_1 + E_2 + E_3 + E_4 + E_5 + E_6$ where
 - Cis the mass of a carton
 - Eis the mass of an egg
 - It is not C+6E because the masses of the 6 eggs could be different

💽 Exam Tip

- In an exam when dealing with multiple variables ask yourself which of the two cases is true
 - You are adding to gether **different observations** using the same variable: $X_1 + X_2 + ... + X_n$
 - You are taking a **single observation** of a variable and multiplying it by a constant: *nX*



4.6.2 Unbiased Estimates

Unbiased Estimates

What is an unbiased estimator of a population parameter?

- An estimator is a random variable that is used to estimate a population parameter
 - An **estimate** is the value produced by the estimator when a sample is used
- An estimator is called unbiased if its expected value is equal to the population parameter
 - An estimate from an unbiased estimator is called an **unbiased estimate**
 - This means that the mean of the unbiased estimates will get closer to the population parameter as more samples are taken
- The sample mean is an unbiased estimate for the population mean
- The sample variance is not an unbiased estimate for the population variance
 - On average the sample variance will **underestimate** the population variance
 - As the sample size increases the sample variance gets closer to the unbiased estimate

What are the formulae for unbiased estimates of the mean and variance of a population?

• A sample of *n* data values $(x_1, x_2, \dots$ etc) can be used to find unbiased estimates for the mean and variance of the population

• An unbiased estimate for the mean μ of a population can be calculated using

$$\overline{X} = \frac{\sum x}{n}$$

• An unbiased estimate for the variance σ^2 of a population can be calculated using

Copyright $S_{n-1}^2 = \frac{n}{n-1} s_n^2$ © 2024 Exam Papers Practice

- © 2024 Exam Papers Practice This is given in the **formula booklet**
 - S_n^2 is the variance of the sample data

$$s_n^2 = \frac{\sum (x - \bar{x})^2}{n} = \frac{\sum x^2}{n} - (\bar{x})^2$$

• Different calculators can use different notations for S_{n-1}^2

•
$$\sigma_{n-1}^2$$
, S^2 , \widehat{S}^2 are notations you might see

• You may also see the square roots of these

Is s_{n-1} an unbiased estimate for the standard deviation?

- Unfortunately s_{n-1} is not an unbiased estimate for the standard deviation of the population
- It is better to work with the unbiased variance rather than standard deviation
- There is not a formula for an unbiased estimate for the standard deviation that works for all populations
 - Therefore you will not be asked to find one in your exam

How do I show the sample mean is an unbiased estimate for the population mean?

- You do not need to learn this proof
 - It is simply here to help with your understanding
- Suppose the population of X has mean μ and variance σ^2
- Take a sample of *n* observations
 - $X_1, X_2, ..., X_n$
 - $E(X_i) = \mu$
- Using the formula for a linear combination of *n* independent variables:

$$E(\overline{X}) = E\left(\frac{X_{1} + X_{2} + \dots + X_{n}}{n}\right)$$

= $\frac{E(X_{1}) + E(X_{2}) + \dots + E(X_{n})}{n}$
= $\frac{\mu + \mu + \dots + \mu}{n}$

Exam Papers Practice

 \circ = $As E(\overline{X}) = \mu$ this shows the formula will produce an **unbiased estimate** for the population mean

Why is there a divisor of n-1 in the unbiased estimate for the variance?

- You do not need to learn this proof
 - It is simply here to help with your understanding
- Suppose the population of X has mean μ and variance σ^2
- Take a sample of *n* observations
 - $X_1, X_2, ..., X_n$
 - $E(X_i) = \mu$
 - $Var(X_i) = \sigma^2$
- Using the formula for a linear combination of *n* independent variables:

$$\operatorname{Var}(\overline{X}) = \operatorname{Var}\left(\frac{X_1 + X_2 + \dots + X_n}{n}\right)$$
$$= \frac{\operatorname{Var}(X_1) + \operatorname{Var}(X_2) + \dots + \operatorname{Var}(X_n)}{n^2}$$
$$= \frac{\sigma^2 + \sigma^2 + \dots + \sigma^2}{n^2}$$
$$= \frac{n\sigma^2}{n^2}$$
$$= \frac{\sigma^2}{n}$$

• It can be shown that $E(\overline{X}^2) = \mu^2 + \frac{\sigma^2}{n}$ • This comes from rearranging $\operatorname{Var}(\overline{X}) = \operatorname{E}(\overline{X}^2) - [\operatorname{E}(\overline{X})]^2$ • It can be shown that $\operatorname{E}(X^2) = \operatorname{E}(X_i^2) = \mu^2 + \sigma^2$

- This comes from rearranging $Var(X) = E(X^2) [E(X)]^2$

• Using the formula for a linear combination of *n* independent variables:

$$E(S_n^2) = E\left(\frac{\sum X_i^2}{n} - \overline{X}^2\right)$$

Example the equation of the equatio

- As $E(S_n^2) \neq \sigma^2$ this shows that the sample variance is not unbiased
 - You need to multiply by $\frac{n}{n-1}$

•
$$E(S_{n-1}^2) = \sigma^2$$

😧 Exam Tip

- Check the wording of the exam question carefully to determine which of the following you are given:
 - The population variance: σ^2
 - The sample variance: S_n^2
 - An unbiased estimate for the population variance: S_{n-1}^2

Worked example

The times, X minutes, spent on daily revision of a random sample of 50 IB students from the UK are summarised as follows.

$$n = 50$$
 $\sum x = 6174$ $s_n^2 = 1384.3$

Calculate unbiased estimates of the population mean and variance of the times spent on daily revision by IB students in the UK.

